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R Code to Supplement
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#This file contains R code that reproduces the examples from Design of Experiments
#with MINITAB by Mathews. In some cases, alternative and extra methods are given where
#R has special capabilities.

#The code contained here was run on R Version 2.0.1 and produces output comparable to
#that from MINITAB V14. There are probably more accurate, efficient, or better ways of
#producing the same or similar output in R than the methods shown here, but the methods
#shown work.

#If you find any mistakes or have recommendations on how to improve this document,
#please communicate them to me by e-mail at the address below.

#Paul Mathews and MM&B Inc. take no responsibility for the accuracy, stability, use,
#or misuse of any of the R code contained here.

#Copyright © 2005 Paul Mathews

#Paul Mathews, President
#Mathews Malnar and Bailey, Inc.
#E-mail: paul@mmbstatistical.com
#Web: www.mmbstatistical.com

#Rev. 4/20/05 (PGM)

#Rev. 5/18/05 (PGM) Added TukeyHSD p value calculations from library (multcomp) .

#Rev. 7/19/05 (PGM) Added command to change lattice/trellis background from gray to white
in Example 1.3.
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# R Conventions
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#Command prompt: R commands are submitted by typing them at the command prompt ">".
#Two or more commands separated by semicolons may appear on the same line. If an R
#command is too long for one line, hit <Enter> and R will allow you to continue the
#command on the next line at the "+" prompt. For example:

# > help (

# + 1m) #Find help for the 1m function.

#Several commands that need to be considered together may be collected within braces
#{} which may be separated over several lines.

#0Objects: Data in R and the output of R analyses are all "objects" that have properties
#defined within R. For example, the R command:

# > Y.1lm = 1lm(Y~X)

#fits a linear model for Y as a function of X. The output of the lm function is assigned
#to the new object Y.Ilm, but the 1lm function by itself doesn't create any visible output.
#There are other functions which extract information/output from Y.lm: summary (), anova(),
#coefficients (), residuals(), plot(), etc. The results from each of these functions are
#themselves objects.

#0Object names: R commands and object names are case sensitive. For example, the command
#"anova" is different from "Anova". Object names must start with a letter and can contain
#numbers and limited special characters. Periods are commonly used as delimitors in object
#names, e.g. y.lm.residuals.

#0bject class: Objects have different classes that have different properties. When objects
#are passed to a function, they must be compatible with the expected class required by the
#function. Many errors in R commands are caused by mismatched object classes.

#Assignment operations: Objects are assigned values using the R assignment operators "="
#or "<-". For example, y.lm = lm(y~x) assigns the output from the 1lm function to the object
#y.1lm. The class of y.lm will be determined by the class of 1lm's output.

#Boolean operations: Boolean operations are used to control branching in if statements.
#They must appear inside of parentheses. The results from Boolean operations are either

#TRUE or FALSE. The Boolean "equals" operator is two equals signs: "==". For example, the
#Boolean operation (x1==5) is TRUE if x1 equals 5 and FALSE if it's not. The Boolean "not
#equals" operator is "!=", as in (x1!=5). The Boolean "or" operator is "||", as in (A || B).

#Missing values: Missing values in data sets are indicated with "NA". For example:
# > x1 = ¢(1,3,2,3,1,1,N4,2,2)

#Comments: Anything typed after a pound (#) symbol on the command line is interpreted as
#a comment by R.
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# R Utility Functions
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#The following utility functions are basic to operations in R. Knowledge of their usage
#is assumed throughout the material that follows. This list does not include any

#analysis functions.

#The functions are given in alphabetical order. Use help() and help.search() to find
#more details about a function or topic.

#Function

#apropos ("for")
fattach(Y.data)

#xl=c(1,1,1,2,2,2,3,NA,3)

#Y.des.mat=cbind (des.mat,Y)
#class (y.1lm)

#data.entry (x=c (NA))

#y.data.frame=data.frame (y, x1,x2,x3)
#detach (y.data.frame)

#ID=factor (ID)

#for (i in 1:5) {}

#x1=gl1l(3,2,24)

#help (1m)

#help.search ("residuals"

#if (x==1) {y=5} else {y=0}

#length (x)

#letters[1:5]
#LETTERS[1:5]

#library (multcomp)

#1s ()
#load("c:/R/my.Rdata")
#names (Y.data.frame)
#Yby3 = Y[order(Y[,3]),]

#par (mfrow=c (2, 2)

#print (y)

#quit ()

#Y.DOE=rbind (replicatel, replicate?2)

#Description

#Returns all objects that contain the indicated string
#Puts the data in object Y.data on R's search list.

#c () is the concatenate function - assigns x1 the
#values 1,...,3. NA is a missing value.

#Appends columns of two objects into a new object
#Returns the class of the object y.lm.

#0Opens a spreadsheet environment for data entry for
#object x.

#Creates a data frame y.data.frame of vy,
#Remove y.data.frame from the search path.

#Changes ID into a factor, e.g. for a predictor in
#ANOVA.

#Loop from i=1 to 5, do the operation(s) in {} each
#time through the loop.

#Generate a list of integers 1 to 3, repeated twice
#each, for a total of 24 values.

#Find help files for the 1lm function. In some cases,
#the argument must appear in quotes, e.g. help("if").

#Search the help files for the word "residuals".
#An if/else statement. This statement can be split on
#several lines, but "} else {" must appear in the same

#line.

#Returns the length of the vector x, i.e. its number
#of observations.

#Create a list of lower case letters "a", ..., "e".
#Upper case letters "A", ..., "E".

#Load the package multcomp.

#List the current objects.

#Loads the data in the indicated file. See save().
#Prints the names of the variables in the data frame.
#0rders the data frame Y by its third column.

#par sets graphics parameters, mfrow makes figures
#arranged in rows (2) and columns (2).

#Print the object y, equivalent to Jjust typing "y" at
#the command prompt.

#Quit the R program, equivalent to File> Exit.

#Appends rows from one object onto another.

#read.table ("c:/R/junk.dat", header=TRUE, sep="") #Reads white-space-separated data from

#x.rep=rep (x,4)

#rm(x,y)

#file junk.dat using a one-line header.
#Repeat the contents of x four times, store result in

#Remove (delete) objects x and y from the R session.

X.rep.



#save(x, y, file = "my.Rdata") #Save objects x and y in file my.Rdata. See load().

#save.image () #Save objects, packages, etc., i.e. the whole R environment.
#x=seq (10,30, 2) #Generate a sequence of numbers from 10 to 30 in steps of size 2
#sink ("output.txt") #Copies the text output from R to the indicated file.

#source ("c:/R/mycode.R") #Runs the R code in the indicated file.
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# CHAPTER 1: Graphical Presentation of Data
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### Example 1.1 (p. 2) Bargraph of defects data.

defect.freg=c(450,150,50,50,300)

defect.names=c ("Scratches","Pits", "Burrs", "Inclusions", "Other")
barplot (defect.freq, names.arg=defect.names,xlab="Defect Category",ylab="Number of Defects")
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### Example 1.2 (p. 3) Histogram of example data with forced categories.
hist.data=c(52,88,56,79,72,91,85,88,68,63,76,73,86,95,12,69)
hist (hist.data,breaks=c(10,20,30,40,50,60,70,80,90,100))

Hhegmmethiitaats

### Extra: Density plot.
plot (density (hist.data))
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### Example 1.3 (p. 4) Dotplot (or stripchart in R).
stripchart (hist.data);title("Stripchart or dotplot of histogram data.")#Add the title to the dotplot

Ifripehartor dotpiotathirtogram ded.

### Alternative dotplot using lattice package:

library(lattice)

trellis.par.set (background=0) #Change background from default gray (1) to white (0)
dotplot (hist.data)



### Example 1.4 (p. 4) Stem and leaf plot.

stem(hist.data)

The decimal point is 1 digit(s) to the right of the

01l 2

2 |

4 ] 26

6 | 3892369
8 | 568815

### Example 1.5 (p. 6) Boxplot.
boxplot (hist.data,horizontal=TRUE)

Fl e

### Example 1.6 (p. 7) Scatter plot.
Quiz=c(12,14,13,15,15,16,16)

Exam=c (55, 60,70,75,90,90,100)

plot (Quiz, Exam)
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### Example 1.7 (p. 8) Multi-vari chart.
Quiz.Student=c(1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,1,2,3,4,5,1,2,3,4,5) #Alternatively:
Quiz.Student=gl(5,1,30)

Quiz.class=c(1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,3,3) #Quiz.Class=gl (3,10, 30)
Quiz.which=c(1,1,1,1,1,2,2,2,2,2,1,1,1,1,1,2,2,2,2,2,1,1,1,1,1,2,2,2,2,2) #Quiz.Which=gl (2,5, 30)
Quiz.Score=c(87,82,78,85,73,86,92,82,85,97,81,85,85,80,96,97,93,92, 88,88, 84,

96,86,92,83,100,91,102,99,101)

Quiz=data.frame (Quiz.Student,Quiz.Class,Quiz.Which,Quiz.Score) #Makes the data frame
plot (Quiz.Score~Quiz.Class,pch=Quiz.Which)

### After the plot is created, add the legend to it with the following command:

legend(2.5,80,legend=c(1,2),pch=c(1,2)) #Adds legend at position(2.5,80)
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### Example 1.7 (p. 8) Alternative multi-vari chart using lattice package:

library(lattice)

xyplot (Quiz.Score~Quiz.Class|Quiz.Which) #Plots Score vs. Class in two panels defined by
Which



##4# Example 1.9
random.normal=rnorm(40,300,20)
par (mfrow=c (1, 3)
columns

hist (random.normal)

stripchart (random.normal, vertical=TRUE)
boxplot (random.normal)

Hwlgram sfrandam.namal
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Script that creates and plots random normal data.

par (mfrow=c(1,1)
column

# (sample size, mean, standard deviation)
#Three graphs on one page, 1 row by 3

#Reset the graphics display to 1 row and 1
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# CHAPTER 2:

Descriptive Statistics
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### Example 2.15

Calculating statistics from sample data.



Example.Data=c(16,14,12,18,9,15)
length (Example.Data) #Sample size
[1] 6

mean (Example.Data)
[1] 14

sd (Example.Data)
[1] 3.162278

range (Example.Data) #Reports min and max values
[1] 9 18

diff (range (Example.Data) ) #Sample range
[11 9

summary (Example.Data) #Common summary statistics

Min. 1lst Qu. Median Mean 3rd Qu. Max.
9.00 12.50 14.50 14.00 15.75 18.00

### Example 2.16 (p. 35) Calculating and plotting the normal probability density function.

x=seq(320,480,1) #The array of x values
pdf=dnorm(x,400,20) #The corresponding pdf
y.max=1.1*max (pdf) #Upper limit for y axis
plot (x,pdf, type="1") #Create the plot, type is "1"ine

### Now add the requested reference lines
xref=c (370,370)
yref=c (0, y.max)

lines (xref, yref) #Reference line at x=370
xref=c (400,400)

lines (xref, yref) #Reference line at x=400
xref=c (410,410)

lines (xref, yref) #Reference line at x=410
xref=range (x)

yref=c (0,0) #Reference line at y=0

lines (xref, yref)
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# CHAPTER 3: Inferential Statistics
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# Many of the problems in this chapter make use of summarized data. For example, the

# sample mean, standard deviation, and sample size are given instead of the raw data

# for problems in calculating confidence intervals and performing hypothesis tests.

# Normally one would use R to perform all of these operations. To fill these data gaps
# and demonstrate the use of R, the affected examples shown here use data sets from

# other examples in the book.

### Example 3.2 (p. 42) Confidence interval for the population mean (sigma known) .

### Example: For the data from Example 3.24, find the 95% confidence interval for the population

### mean assuming that the population standard deviation is known to be sigma = 5.
one.sample.z.ci=function (x,sigma, conf=0.95) #Function to find the one-sample two-sided z CI



{
zhalfalpha=-gnorm((l-conf)/2);SE=sigma/sqgrt (length (x))

mean (x) +c (-zhalfalpha*SE, zhalfalpha*SE) #Here's the CI calculation

}

Y=c(22,25,32,18,23,15,30,27,19,23) #Data from Example 3.24

one.sample.z.ci(Y,5) #Call the function with sigma=5, 95% default confidence

[1] 20.30102 26.49898

### Example 3.6 (p. 47) Hypothesis test for one sample location (sigma known).

### Example: Test the data from Example 3.24 to see if the population mean is different from

### mu = 20 assuming that the population standard deviation is known to be sigma = 5.
one.sample.z.test=function (x, sigma,mu0) #Function for the one-sample two-sided z test
{

z=(mean (x) -mu0) / (sigma/sqgrt (length (x)))

2*pnorm (-abs (z))

}

Y=c(22,25,32,18,23,15,30,27,19,23) #Data from Example 3.24

one.sample.z.test (Y,5,20) #Function reports the two-sided p value

[1] 0.03152763

### Example 3.10 (p. 54) Hypothesis test for one sample location (sigma unknown) .

### Example: Test the data from Example 3.24 to see if the population mean is different from mu = 20.
Y=c(22,25,32,18,23,15,30,27,19,23) #Data from Example 3.24

t.test (Y, mu=20) #Reports the p value and CI

One Sample t-test

data: Y
t = 2.0223, df = 9, p-value = 0.07385
alternative hypothesis: true mean is not equal to 20
95 percent confidence interval:
19.59670 27.20330
sample estimates:
mean of x
23.4

### Example 3.11 (p. 55) Confidence interval for the population mean (sigma unknown) .

### Example: For the data from Example 3.24, determine the 95% confidence interval for the population mean.
Y=c(22,25,32,18,23,15,30,27,19,23) #Data from Example 3.24

t.test (Y) #Reports the p value for mu0=0 and the CI

One Sample t-test

data: Y
t = 13.9181, df = 9, p-value = 2.158e-07
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
19.59670 27.20330
sample estimates:
mean of x
23.4

### Example 3.12 (p. 57) Hypothesis test for two samples location (sigmas unknown but equal).
### Example: Test the data from Example 3.20 for a difference between the population means

### assuming that the population variances are equal.

Mfg=gl(2,10,20)

Gain=c (44,41,48,33,39,51,42,36,48,47,51,54,46,53,56,43,47,50,56,53)

t.test (Gain~Mfg, var.equal=TRUE) #Equal variance assumption should be tested

Two Sample t-test

data: Gain by Mfg
t = -3.4867, df = 18, p-value = 0.002633
alternative hypothesis: true difference in means is not equal to 0O
95 percent confidence interval:
-12.820435 -3.179565
sample estimates:
mean in group 1 mean in group 2
42.9 50.9

t.test (Gain~Mfg) #Welch's method is preferred
Welch Two Sample t-test

data: Gain by Mfg
t = -3.4867, df = 16.776, p-value = 0.002871
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:
-12.845777 -3.154223



sample estimates:
mean in group 1 mean in group 2
50.9

### Example 3.13 (p. 60) Paired sample t test.
x1l=c (44,62,59,29,78,79,92,38)

x2=c (46,58,56,26,72,80,90,35)

x=c (x1,x2)

ID=gl(2,8,16)

t.test (x~ID,paired=TRUE)

Paired t-test

data: x by ID

t = 2.443, df = 7, p-value = 0.04456
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:

0.07221536 4.42778464

sample estimates:
mean of the differences

2.25

### Note: the p-value reported in the book is incorrect. The correct p-value is
### given by: P(-2.443 < t < 2.443; df=7) = 0.04456

### Example 3.14 (p. 64) Chi-square test for one population variance.

### Example: Test the data from Example 3.24 to determine if the population variance
### is larger than sigma = 3.

chisg.p=function(x,sigmal,alt)

{

df=length(x)-1

chisqg.statistic=df*var (x)/sigma0"2

if (alt==1) { #Right tail test for Ho: sigma > sigma0
pchisg(chisqg.statistic,df, lower.tail=FALSE)
} else { #Left tail test for Ha: sigma < sigmaOl

pchisqg(chisqg.statistic,df, lower.tail=TRUE) }
}

Y=c(22,25,32,18,23,15,30,27,19,23)
chisqg.p(Y,3,1)

[1] 0.0008607428

### Example 3.20 (p. 70) Tukey's quick test.
Mfg=c ("A","A","A","A", "A", "A", "A", "A" "A" "AUM WRY WRM WRN WRM WRM NRH RN nRw npn npm)
Gain=c(44,41,48,33,39,51,42,36,48,47,51,54,46,53,56,43,47,50,56,53)
Mfg.Gain=data.frame (Mfg,Gain)

plot (Mfg.Gain)
lines(c(1l,2),rep (max (subset (Mfg.Gain$Gain,Mfg=="A")),2)

)
lines(c(1l,2),rep(min (subset (Mfg.Gain$Gain,Mfg=="B")),2))
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### Example 3.24 (p. 77) Normal probability plot.
Y=c(22,25,32,18,23,15,30,27,19,23)

ggnorm(Y) ;ggline (Y) #Creates the normal plot and a line through Q1 and Q3



Normal G-G Plat

°
o
i
o
N
i

T T T T T T T

1.5 -1.0 as oo os 1.0 15

Trewe lod Quanlies
shapiro.test (Y) #Shapiro-Wilk quantitative test for normality
Shapiro-Wilk normality test

data: Y

W = 0.9793, p-value = 0.9613
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# CHAPTER 4: DOE Language and Concepts
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### Example 4.9 (p. 111) Golf ball flight distance as a function of temperature.
Distance=c(31.5,32.7,33.98,32.1,32.78,34.65,32.18,33.53,34.98,32.63,33.98,35.3,32.7,34.64,36.53,32.0,34.5,38.2)

Temperature=rep(c(66,-12,23),6
plot (Distance~Temperature)
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### Example 4.12 (p. 4.12) Analysis of saw blade cuts versus lubricant.
Blade=c(5,1,4,9,3,2,3,10,2,6,7,9,8,6,5,8,1,7,4,10)
Lube=c(2,2,1,1,2,1,1,2,2,2,1,2,1,1,1,2,1,2,2,1)
Cuts=c(162,145,117,135,145,124,131,147,146,134,130,142,134,138,123,161,139,139,149,139)
Cuts.data = data.frame (Blade, Lube,Cuts)

library(lattice)

xyplot (Cuts~Lube, groups=Blade, type = "b",main="Cuts versus Lube by Blade",data=Cuts.data)



Cuts.data.l = subset (Cuts.data, Lube==1) #Subset of the first lube (LAU-003)

Cuts.data.2 = subset (Cuts.data, Lube==2) #Subset of the second lube (LAU-016
Cuts.data.l=Cuts.data.l[order (Cuts.data.1l[,1]),] #Ordered by blade
Cuts.data.2=Cuts.data.2[order (Cuts.data.2[,1]),]

t.test (Cuts.data.l$Cuts,Cuts.data.2%Cuts,paired=TRUE) #Paired sample t test

Paired t-test

data: Cuts.data.l$Cuts and Cuts.data.2$Cuts

t = -3.7482, df = 9, p-value = 0.004568

alternative hypothesis: true difference in means is not equal to 0O
95 percent confidence interval:

-25.656582 -6.343418

sample estimates:
mean of the differences

-16
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# CHAPTER 5: Experiments for One-Way Classifications

FhEFHEF AR R R R A R R R R
### Example 5.9 (p. 169) ANOVA for a one-way classification with nine treatments.

Y=c(80.9,78.3,77.8,76.6,82.2,74.5,80.5,77,82.5,78.2,81.8,83.5,84.2,75.7,81.4,
78,81.9,83.2,76.2,78.7,79.5,75.3,82.2,78.7,74.2,84.1,83.7,80.6,84.3,80.5,
77.2,82.6,79.1,83.7,81.9,77.9,78.3,83.1,78.9,83.4,81,77.8,77.4,78.4,78.1,
74.5,79,79.7,83.1,76.4,80.2,80.9,81.2,84,83.7,80.3,80.8,83.6,83.4,78.6,
82.8,73.6,82.7,86.6,83.6,85.6,83.9,86,77,80,84.2,76.7,83.1,77.9,77.9,79.9,
83.7,80.5,81.4,74.8,86.1)

X=g1(9,9,81)

boxplot (Y~X) #Boxplots
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Y.aov=aov (Y~X) #Perform the ANOVA
summary (Y.aov) #Report the ANOVA table

Df Sum Sg Mean Sg F value Pr (>F)

X 8 93.86 11.73 1.2201 0.2998

Residuals 72 692.34 9.62

aggregate (Y, 1list (X) , FUN=mean) #Report the Y means by X
Group.1 X

1 1 78.92222

2 2 80.877178

3 3 79.17778

4 4 80.86667

5 5 79.60000

6 6 79.88889

7 7 81.05556

8 8 82.62222

9 9 80.58889

TukeyHSD (Y.aov) #Report the Tukey HSD CIs

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = Y ~ X)

Ur
>

diff lwr upr
.95555556 -2.7193408 6.630452
.25555556 -4.4193408 4.930452
.94444444 -2.7304520 6.619341
.67777778 -3.9971186 5.352674
.96666667 -3.7082297 5.641563
.13333333 -2.5415631 6.808230
.70000000 -0.9748964 8.374896
1.66666667 -3.0082297 6.341563
-1.70000000 -6.3748964 2.974896
-0.01111111 -4.6860075 4.663785
-1.27777778 -5.9526742 3.397119
-0.98888889 -5.6637853 3.686008
0.17777778 -4.4971186 4.852674
1.74444444 -2.9304520 6.419341
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.28888889 -4.9637853 4.386008
.68888889 -2.9860075 6.363785
. 42222222 -4.2526742 5.097119
.71111111 -3.9637853 5.386008
.87777778 -2.7971186 6.552674
.44444444 -1.2304520 8.119341
.41111111 -3.2637853 6.086008
.26666667 -5.9415631 3.408230
.97777778 -5.6526742 3.697119
.18888889 -4.4860075 4.863785
.75555556 -2.9193408 6.430452
.27777778 -4.9526742 4.397119
.28888889 -4.3860075 4.963785
.45555556 -3.2193408 6.130452
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3.02222222 -1.6526742

0.98888889 -3.6860075

1.16666667 -3.5082297 5.841563
2.73333333 -1.9415631 7.408230
0
1
0

7.697119
5
5
7
.70000000 -3.9748964 5.374896
6
4
2

.663785

.56666667 -3.1082297
.46666667 -5.1415631
-2.03333333 -6.7082297

.241563
.208230
.641563
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plot (TukeyHSD(Y.aov)) #Plot the CIs
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dotplot (residuals (Y.aov) ~X) #Dotplot of residuals

ggnorm(residuals (Y.aov)); ggline (residuals(Y.aov)) #Normal plot of residuals
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### Example 5.11 (p. 180) ANOVA of log-transformed data.
Y=c(31,36,11,24,37,16,18,20,18,20,13,23,6,9,11,9,6,8,11,5,12,4,9,6,10,
15,21,9,29,32,28,27,16,16,20,32,35,19,17,24,18,20,33,24,40,24,10,14,45, 36,
49,32,47,89,47,27,58,73,66,77)

X=gl(5,12,60)

boxplot (Y~X) #Check the boxplots - trouble!

Y.aov=aov (Y~X) #Do the ANOVA anyway
ggnorm(residuals (Y.aov)); ggline (residuals(Y.aov)) #Check the ANOVA residuals - trouble!
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boxplot (logl0(Y)~X,ylab="1log(Y)") #Boxplot of log transformed Y values - looks better!
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logY.aov=aov (1ogl0 (Y) ~X) #Do the ANOVA

ggnorm(residuals (logY.aov)); ggline(residuals (logY.aov)) #Normal plot with reference line
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summary (logY.aov) #Reports the ANOVA of the log-transformed data
Df Sum Sg Mean Sg F value Pr (>F)

X 44,1015 1.0254 36.669 6.371le-15 ***
Residuals 55 1.5380 0.0280
Signif. codes: O “***' 0.001 “**' 0.01 “*' 0.05 ".' 0.1 *~ ' 1

### Example 5.12 (p. 183) Plots of original and transformed Poisson random samples with different means.

Random.Poisson = c(rpois(20,3),rpois(20,9),rpois(20,27),rpois(20,81),rpois(20,243)) #Random Poisson samples
Treatment=gl (5,20,100) #Treatment codes 1:5
plot (Random.Poisson~Treatment) #Plot of raw counts - trouble!
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ftc.Random.Poisson=(sqgrt (Random.Poisson) +sqgrt (Random.Poisson+1)) /2 #Transform the counts

plot (ftc.Random.Poisson~Treatment) #Plot of the transformed counts
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ftc.resid=residuals (aov (ftc.Random.Poisson~Treatment)
ggnorm (ftc.resid) ;ggline (ftc.resid)
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### Example 5.14 (p. 188) Sample-size and power calculations for one-way ANOVA.

### Note: The function power.anova.test specifies the problem in terms of the between-treatment
### and within-treatment variances, which have to be calculated first.

Biases=c(-5,5,0,0,0) #Treatment biases relative to grand mean

BTV=var (Biases) #Between treatment variance
#BTV=2*5"2/(5-1) #Alternative BTV calculation
WTV=4.2"2 #Within treatment variance
power.anova.test (groups=5,between.var=BTV,within.var=WTV, power=0.90) #Find the sample size

Balanced one-way analysis of variance power calculation

groups = 5
n = 6.465695
between.var = 12.5
within.var = 17.64
sig.level = 0.05
power = 0.9

NOTE: n is number in each group
power.anova.test (groups=5,n=7,between.var=BTV,within.var=wTV)

Balanced one-way analysis of variance power calculation

#ANOVA residuals after transform
#Normal plot of residuals - looks great!

(Answer 1is n=7)

#Check the exact power for n=7



groups = 5
n =717
between.var = 12.5
within.var = 17.64
sig.level = 0.05
power = 0.9279148

NOTE: n is number in each group
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# CHAPTER 6: Experiments for Multi-Way Classifications
FHEEEEHH R R R R R R R R R R R R R

FHEHFHF A AR A AR A S WARNING! || ## #4444 44444
### The analyses shown here using the aov() function are only valid for balanced

### experiment designs. If you have an unbalanced design or a balanced design with
### missing values, you MUST use the Anova() function in the car package with

### Type II sums of squares. (What R and SAS call Type II sums of squares are called
### Type III sums of squares in MINITAB and some other packages.)

FHAFF A R R R R R R R R R R

### Example 6.2 (p. 195) Review of one-way ANOVA.
Y=c(14,17,13,12,20,21,16,15,25,29,24,22)
Tr=gl(3,4,12)

Y.aov=aov (Y~Tr)

summary (Y.aov)

Df Sum Sg Mean Sg F value Pr (>F)
Tr 2 248.000 124.000 16.909 0.0008949 **x*
Residuals 9 66.000 7.333
Signif. codes: 0 “***' 0.001 “**' 0.01 “*' 0.05 *.' 0.1 °~ ' 1
par (mfrow=c(2,2))
plot (Y.aov) #Residuals diagnostic plots
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### Example 6.12 (p. 216) Two-way ANOVA.
Y=c(18,16,11,42,40,35,34,30,29,46,42,41)
A=gl(4,3,12)

B=gl(3,1,12)

Y.aov=aov (Y~A+B)

summary (Y.aov)

Df Sum Sg Mean Sg F value Pr (>F)
A 3 1380.00 460.00 345 4.179e-07 ***
B 2 72.00 36.00 27 0.001 **
Residuals 6 8.00 1.33

Signif. codes: 0O “***' 0.001 “**' 0.01 “*' 0.05 ".' 0.1 *~ ' 1



par (mfrow=c(2,2))
plot (Y.aov)
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### Example 6.12 (p. 216) Two-way ANOVA with interaction.
Y=c(29,33,24,22,46,48,48,44,36,32,26,22)

A=gl(3,4,12)

B=gl(2,2,12)

Y.aov=aov (Y~A*B)

summary (Y.aov)

Df Sum Sg Mean Sq F value Pr (>F)
A 2 920.67 460.33 76.7222 5.329e-05 ***
B 1 120.33 120.33 20.0556 0.00420 **
A:B 2 44.67 22.33 3.7222 0.08888
Residuals 6 36.00 6.00
Signif. codes: 0 “***' 0.001 “**' 0.01 “*' 0.05 *.' 0.1 * ' 1

### The interaction term is not significant, so drop it from the model.
Y.aov=aov (Y~A+B)
summary (Y.aov)

Df Sum Sg Mean Sg F value Pr (>F)
A 2 920.67 460.33 45.653 4.212e-05 ***
B 1 120.33 120.33 11.934 0.008637 **
Residuals 8 80.67 10.08
Signif. codes: 0 “***' 0.001 “**' 0.01 “*' 0.05 *.' 0.1 * ' 1

par (mfrow=c(2,2))
plot (Y.aov)
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### Example 6.13 (p. 217) Analysis of a rotator cuff repair anchor.

Anchor=c(1,3,2,3,2,1,2,2,3,1,3,1,2,3,2,3,1,1,1,2,2,3,3,1,2,2,1,3,1,3,2,1,3,1,2,3,3,3,2,1,1,2,1,2,2,3,1, 3)

rFoam=c(1,1,2,2,1,2,1,2,2,1,1,2,2,2,1,1,2,1,2,1,2,2,1,1,1,2,2,1,1,2,1,2,1,1,2,2,2,1,1,2,1,2,2,1,2,1,1,2)

Force=c(191,194,75,146,171,79,188,76,136,195,207,86,71,145,184,195,81,198,98,178,77,138,202,193,169, 63,90,
)

194,191,132,172,86,203,196,64,130,132,209,180,85,182,67,88,191,70,197,205,143
par (mfrow=c(1,2))

plot (Force~Foam, pch=Anchor)

plot (Force~Anchor, pch=Foam)
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Anchor=factor (Anchor)
Foam=factor (Foam)
Force.aov=aov (Force~Anchor*Foam)
summary (Force.aov)
Df Sum Sg Mean Sg F value Pr (>F)
Anchor 2 16084 8042 194.579 < 2.2e-16 ***
Foam 1 103324 103324 2499.943 < 2.2e-16 ***
Anchor:Foam 2 5556 2778 67.209 8.144e-14 ***

Residuals 42 1736 41

Signif. codes: 0 “***' 0.001 “**' 0.01 “*' 0.05 *.' 0.1 ~ ' 1



par (mfrow=c(2,2))

plot (Force.aov) #Residuals diagnostic plots
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TukeyHSD (Force.aov)

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula = Force ~ Anchor * Foam)

$Anchor

diff lwr upr
2-1 -15.5000 -21.02211 -9.977886
3-1 28.6875 23.16539 34.209614
3-2 44.1875 38.66539 49.709614

$Foam
diff lwr upr
2-1 -92.79167 -96.53693 -89.0464

$"Anchor:Foam"

diff lwr upr
- -14.750 -24.345887 -5.154113
- 6.250 -3.345887 15.845887

-107.250 -116.845887 -97.654113
-123.500 -133.095887 -113.904113
-56.125 -65.720887 -46.529113

21.000 11.404113 30.595887
-92.500 -102.095887 -82.904113
-108.750 -118.345887 -99.154113
-41.375 -50.970887 -31.779113
-113.500 -123.095887 -103.904113
-129.750 -139.345887 -120.154113
-62.375 -71.970887 -52.779113
-16.250 -25.845887 -6.654113

51.125 41.529113 60.720887

67.375 57.779113 76.970887
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par (mfrow=c(2,2))
plot (TukeyHSD (Force.aov))
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library (multcomp) #Multiple
summary (simint (Y~X, whichf="X",type = "Tukey")) #TukeyHSD

Simultaneous 95% confidence intervals: Tukey contrasts

Call:
simint.formula (formula = Y ~ X, type = "Tukey")

Tukey contrasts for factor X

Contrast matrix:
X1 X2 X3 X4 X5 X6 X7 X8 X9

X2-X10-1 1 0 O O O O 0 O
X3-X1 0-1 0 1 0O O O O 0 O
X4-X10-1 0 O 1 O O 0O 0 O
X5-X1 0-1 0 O O 1 0 0 0 O
X6-X1 0-1 0 O O O 1 0 0 O
X7-x1 0-1 0 0O 0O O O 1 0 O
X8-Xx1 0-1 0 0O O O O O 1 O
X9-x1 0-1 0 0O O O O O O 1
X3-X2 0 0-1 1 0O O 0 0 0 O
X4-X2 0 0-1 0 1 O O O 0 O
X5-X2 0 0-1 0 O 1 0 0 0 O
X6-X2 0 0-1 0 O O 1 0 0 O
X7-X2 0 0-1 0 O O O 1 0 O
X8-X2 0 0-1 0 O O O O 1 O
X9-X2 0 0-1 0 O O O 0 0 1
X4-X3 0 0 0-1 1 0 O O O O
X5-X3 0 0 0-1 0 1 0 O O O
X6-Xx3 0 0 0-1 0 O 1 O O O
X7-X30 0 0-1 0O O O 1 0 O
X8-X3 0 0 0-1 0O O O O 1 O
X9-X3 0 0 0-1 0O O O 0 0 1
X5-X4 0 0 0 O0-1 1 0O 0 0 O
X6-X4 0 0 0 O0-1 0 1 0 0 O
X7-X4 0 0 0 O0-1 0 O 1 0 O
X8-x4 0 0 0O 0O0-1 0 0 O 1 O
X9-Xx4 0 0 0O 0-1 0 O O O 1
X6-X5 0 0 0O 0O 0-1 1 0 O O
X7-X5 0 0 0 O O0-1 0 1 0 O
X8-X5 0 0 0 O O0-1 0 O 1 O
X9-X5 0 0 0 O O0-1 0 0 0 1
X7-X6 0 0 0 O O O0-1 1 0 O
X8-X6 0 0 0 O O O-1 0 1 O
X9-X6 0 0 0 O O O0-1 0 0 1
X8-X7 0 0 O O O O O0-1 1 O
X9-X7 0 0 O O O O O0-1 o0 1
X9-Xx8 0 0 O 0O O O O O0-1 1
Absolute Error Tolerance: 0.001

95 % quantile: 3.198

Coefficients:

comparisons package
CIs and p values



Estimate 2.5 % 97.5 % t value Std.Err. p raw p Bonf p adj
X2-X1 1.956 -2.720 6.631 1.338 1.462 0.185 1.000 0.916
X3-X1 0.256 -4.420 4.931 0.175 1.462 0.862 1.000 1.000
X4-X1 1.944 -2.731 6.620 1.330 1.462 0.188 1.000 0.919
X5-X1 0.678 -3.998 5.353 0.464 1.462 0.644 1.000 1.000
X6-X1 0.967 -3.709 5.642 0.661 1.462 0.511 1.000 0.999
X7-X1 2.133 -2.542 6.809 1.459 1.462 0.149 1.000 0.870
X8-X1 3.700 -0.975 8.375 2.531 1.462 0.014 0.488 0.235
X9-X1 1.667 -3.009 6.342 1.140 1.462 0.258 1.000 0.966
X3-X2 -1.700 -6.375 2.975 -1.163 1.462 0.249 1.000 0.962
X4-X2 -0.011 -4.686 4.664 -0.008 1.462 0.994 1.000 1.000
X5-X2 -1.278 -5.953 3.398 -0.874 1.462 0.385 1.000 0.994
X6-X2 -0.989 -5.664 3.686 -0.676 1.462 0.501 1.000 0.999
XT-X2 0.178 -4.498 4.853 0.122 1.462 0.904 1.000 1.000
X8-X2 1.744 -2.931 6.420 1.193 1.462 0.237 1.000 0.955
X9-X2 -0.289 -4.964 4.386 -0.198 1.462 0.844 1.000 1.000
X4-X3 1.689 -2.986 6.364 1.155 1.462 0.252 1.000 0.963
X5-X3 0.422 -4.253 5.098 0.289 1.462 0.774 1.000 1.000
X6-X3 0.711 -3.964 5.386 0.486 1.462 0.628 1.000 1.000
X7-X3 1.878 -2.798 6.553 1.285 1.462 0.203 1.000 0.933
X8-X3 3.444 -1.231 8.120 2.356 1.462 0.021 0.763 0.324
X9-X3 1.411 -3.264 6.086 0.965 1.462 0.338 1.000 0.988
X5-X4 -1.267 -5.942 3.409 -0.867 1.462 0.389 1.000 0.994
X6-X4 -0.978 -5.653 3.698 -0.669 1.462 0.506 1.000 0.999
X7-X4 0.189 -4.486 4.864 0.129 1.462 0.898 1.000 1.000
X8-X4 1.756 -2.920 6.431 1.201 1.462 0.234 1.000 0.954
X9-X4 -0.278 -4.953 4.398 -0.190 1.462 0.850 1.000 1.000
X6-X5 0.289 -4.386 4.964 0.198 1.462 0.844 1.000 1.000
X7-X5 1.456 -3.220 6.131 0.996 1.462 0.323 1.000 0.985
X8-X5 3.022 -1.653 7.698 2.067 1.462 0.042 1.000 0.503
X9-X5 0.989 -3.686 5.664 0.676 1.462 0.501 1.000 0.999
X7-X6 1.167 -3.509 5.842 0.798 1.462 0.427 1.000 0.997
X8-X6 2.733 -1.942 7.409 1.870 1.462 0.066 1.000 0.637
X9-X6 0.700 -3.975 5.375 0.479 1.462 0.633 1.000 1.000
X8-X7 1.567 -3.109 6.242 1.072 1.462 0.287 1.000 0.976
X9-X7 -0.467 -5.142 4.209 -0.319 1.462 0.750 1.000 1.000
X9-X8 -2.033 -6.709 2.642 -1.391 1.462 0.169 1.000 0.898

### Example 6.14 (p. 224) Commands to create the 3x8x5 factorial design matrix with two replicates.
### Variables are going to be named A, B, C, and Rep:

A=gl(3,80,240)

B=gl(8,10,240)

Cc=g1(5,2,24)

Rep=gl(2,1,120)

expt.design = data.frame(A,B,C)

expt.design
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## Example 6.15 (p. 226) Analysis of a two-way design with blocking on replicates.
=c(57,75,46,78,69,68,97,83,81,64,83,60)

=c(1,2,1,2,2,1,2,2,1,1,2,1)

B=c(1,1,3,3,2,2,1,3,1,3,2,2)

Block=gl(2,6,12)

A=factor (A)

B=factor (B)

Block=factor (Block)

Y.aov=aov (Y~Block+A*B)

summary (Y.aov)

Df Sum Sg Mean Sq F value Pr (>F)
Block 1 468.75 468.75 6.4081 0.05244 .
A 1 990.08 990.08 13.5350 0.01431 *
B 2 208.50 104.25 1.4252 0.32375
A:B 2 93.17 46.58 0.6368 0.56706
Residuals 5 365.75 73.15
Signif. codes: 0 “***' 0.001 “**' 0.01 “*' 0.05 *.' 0.1 * ' 1

par (mfrow=c(2,2))
plot (Y.aov)
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# CHAPTER 7: Advanced ANOVA Topics

FHEHEEFEF AR R R R R R R R R R R R R R R R R R R

### Example 7.1 (p. 233) Analysis of a three-variable Latin Square design.
A=c(1,1,1,2,2,2,3,3,3,1,1,1,2,2,2,3,3,3) #equivalent to A=gl(3,3,18
B=c(1,2,3,1,2,3,1,2,3,1,2,3,1,2,3,1,2,3) #equivalent to B=gl(3,1,18
c=c(1,2,3,2,3,1,3,1,2,1,2,3,2,3,1,3,1,2)
Y=c(63,73,78,66,63,92,59,49,99,52,67,82,60,62,73,46,73,79)
A=factor (A)
B=factor (B)
C=factor (C)
Y.lm = 1lm(Y~A+B+C)
anova (Y.1lm) #Report the ANOVA table
Analysis of Variance Table
Response: Y
Df Sum Sg Mean Sg F value Pr (>F)
A 2 12.33 6.17 0.0782 0.9252806
B 2 2210.33 1105.17 14.0163 0.0009436 ***
C 2 268.00 134.00 1.6995 0.2274283
Residuals 11 867.33 78.85
Signif. codes: 0 “***' 0.001 “**' 0.01 “*' 0.05 *.' 0.1 * ' 1
summary (Y.1lm) #And summary statistics including coefficients.
Call:
Im(formula = Y ~ A + B + C)
Residuals:
Min 10 Median 30 Max

-12.6667 -4.2917 0.9167 5.2917 11.3333

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 56.5000 5.5374 10.203 6.04e-07 **x*
A2 0.1667 5.1267 0.033 0.974648
A3 -1.6667 5.1267 -0.325 0.751207
B2 6.8333 5.1267 1.333 0.209515
B3 26.1667 5.1267 5.104 0.000342 #**x*
c2 7.0000 5.1267 1.365 0.199397
C3 -2.0000 5.1267 -0.390 0.703899
Signif. codes: 0O “***' (0,001 “**' 0.01 “*' 0.05 *.' 0.1 > "1

Residual standard error: 8.88 on 11 degrees of freedom
Multiple R-Squared: 0.7417, Adjusted R-squared: 0.6008
F-statistic: 5.265 on 6 and 11 DF, p-value: 0.008713



TukeyHSD (aov (Y~A+B+C) ,which="B") #Reports Tukey HSD CIs for differences between the means of B.

Tukey multiple comparisons of means
95% family-wise confidence level

Fit: aov(formula =Y ~ A + B + C)
$B

diff lwr upr
2-1 6.833333 -7.01309 20.67976
3-1 26.166667 12.32024 40.01309
3-2 19.333333 5.48691 33.17976

plot (TukeyHSD (aov (Y~A+B+C) ,which="B")) #Plots the CIS for B

359% Tamily-wive confidence (i
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library (multcomp)
summary (simint (Y~A+B+C,whichf="B", type="Tukey")) #TukeyHSD CIs and p values

Simultaneous 95% confidence intervals: Tukey contrasts

Call:
simint.formula (formula = Y ~ A + B + C, whichf = "B", type = "Tukey")

Tukey contrasts for factor B, covariables: A + C

Contrast matrix:
Bl B2 B3
B2-B1 0 00 -1 1 O
B3-B1 0 00 -1 0 1
B3-B2 0 00 0 -1 1

Absolute Error Tolerance: 0.001

95 % quantile: 2.701

Coefficients:

Estimate 2.5 % 97.5 % t value Std.Err. p raw p Bonf p adj
B2-B1 6.833 -7.011 20.678 1.333 5.127 0.210 0.629 0.407
B3-B1 26.167 12.322 40.011 5.104 5.127 0.000 0.001 0.001
B3-B2 19.333 5.489 33.178 3.771 5.127 0.003 0.009 0.008

### Example 7.5 (p. 242) GR&R study analysis using random effects model.

### Warning: The R code required to perform this variance components analysis is cryptic!

### For help on the methods from Chapter 7, see Pinheiro and Bates, Mixed-Effects Models in S and S-Plus, Springer,
2000.

Y=c(65,68,60,63,44,45,75,76,63,66,59,60,81,83,42,42,62,63,56,56,38,43,68,71,57,57,55,53,79,77,32,
37,64,65,60,61,46,46,73,71,63,62,57,60,78,82,44,42,71,69,65,66,50,47,78,78,65,68,65,62,90,85,39,41)

Part=gl (8,2,64) #Integers 1 to 8, two times in succession, 64 values total
Op=gl(4,16,64)
Y.aov=aov (Y~1+Error (Part*Op)) #Part and Op are crossed random factors

summary (Y.aov)

Error: Part
Df Sum Sqg Mean Sg F value Pr (>F) #Note: R refuses to report F and p values for random



effects
Residuals 7 10684.0 1526.3

Error: Op
Df Sum Sg Mean Sg F value Pr (>F)
Residuals 3 587.92 195.97

Error: Part:0p
Df Sum Sg Mean Sg F value Pr (>F)
Residuals 21 95.203 4.533

Error: Within
Df Sum Sg Mean Sg F value Pr (>F)
Residuals 32 99.500 3.109

### Now use lme () to extract the variance components:

OpPart = 10*as.numeric (Op)+as.numeric (Part) #Create a code for the Op*Part interaction
Block=rep (1, 64) #A1ll of the observations come from a single
block

Part=factor (Part) #Change variables from quantitative to
qualitative

Op=factor (Op)
OpPart = factor (OpPart)

grr.dataframe=data.frame (Y, Part,Op,OpPart,Block)

library(nlme) #non-linear mixed effects package
grr.groupedData = groupedData (Y~1|Block,data=grr.dataframe) #This object wraps the dataframe and its
equation

grr.lme=1lme (Y~1,data=grr.groupedData, random=pdBlocked (list (pdIdent (~Part-1),pdIdent (~Op-
1) ,pdIdent (~OpPart-1)))) #2722

VarCorr (grr.lme) #Calculate the variance components

Block = pdIdent(Part - 1), pdIdent(Op - 1), pdIdent (OpPart - 1)

Variance StdDev
Partl 190.2137137 13.7917988
Opl 11.9641758 3.4589270

OpPartll 0.7119273 0.8437578
Residual 3.1094800 1.7633718

intervals (grr.lme) #Calculates confidence intervals for the variance
components

Approximate 95% confidence intervals

Fixed effects:

lower est. upper
(Intercept) 50.72553 61.07813 71.43072
attr (,"label™)
[1] "Fixed effects:"

Random Effects:
Level: Block

lower est. upper
sd(Part - 1) 8.1555365 13.7917988 23.32326
sd(Op - 1) 1.5247709 3.4589270 7.84654

sd (OpPart - 1) 0.2833372 0.8437578 2.51265

Within-group standard error:
lower est. upper
1.380988 1.763372 2.251634

plot (grr.lme) #The default plot is residuals vs. predicted
values.



plot.design (grr.groupedData) #Main effects plot for the groupedData object
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plot (grr.lme, form=resid(.)~fitted(.) |Op,abline=0) #Plots residuals vs. fitted values by Op with 0 reference line.



plot (grr.lme, form=resid(.)~fitted(.) |Part,abline=0) #Plots residuals vs. fitted values by Part

interaction.plot (Op, Part,Y) #Interaction plot
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ggnorm(resid(grr.lme)); ggline (resid(grr.lme))

Normal G-G Plot
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### Example 7.7 (p. 249) Analysis of a nested design.

#Residuals normal plot

Batch=c(1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3,1,1,1,11,1,1,1,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3)

#or use Batch=gl(3,8,48)

Tote=c(1,1,2,2,3,3,4,4,1,1,2,2,3,3,4,4,1,1,2,2,3,3,4,4,1,1,2,2,3,3,4,4,1,1,2,2,3,3,4,4,1,1,2,2,3,3,4,4)

#or use Tote=gl (4,2,48)

Cup=c(1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2,1,2)

#or use Cup=gl(2,1,48)

Y=c(12.8,12.8,13,12.9,13.5,13.5,12.9,13.2,11.2,11.2,12.3,12.3,10.7,10.4,11.8,12.1,11.5,11.5,11.3,11.3,
11.6,11.4,11.2,11.1,12.5,12.2,13,12.8,13.5,13.4,12.5,12.7,11.3,11,12.4,12,10.5,10.9,11.5,11.8,11.7,11.3,

11.5,11.4,11.7,11.2,11,11.2)
Batch=factor (Batch)

Tote = factor (Tote)

Cup=factor (Cup)

Y.aov=aov (Y~1+Error (Batch/Tote/Cup))
summary (Y.aov)

Error: Batch
Df Sum Sg Mean Sqg F value Pr (>F)
Residuals 2 25.183 12.592

Error: Batch:Tote
Df Sum Sg Mean Sg F value Pr (>F)
Residuals 9 8.1544 0.9060

Error: Batch:Tote:Cup

#Fully nested random factors



Df Sum Sq Mean Sg F value Pr (>F)
Residuals 12 0.43250 0.03604

Error: Within
Df Sum Sqg Mean Sg F value Pr (>F)
Residuals 24 0.86500 0.03604

### Now use lme() to extract the variance components:

Block=rep(1,48)

Homogeneity.dataframe=data.frame (Batch, Tote,Cup,Y,Block)

library (nlme)
Homogeneity.groupedData=groupedData (Y~1|Block, Homogeneity.dataframe)
Homogeneity.lme=1lme (Y~1,data=Homogeneity.groupedData, random=~1|Batch/Tote/Cup)
VarCorr (Homogeneity.lme)

Variance StdDev
Batch = pdLogChol (1)
(Intercept) 0.7297169665 0.85423473
Tote = pdLogChol (1)
(Intercept) 0.2176946855 0.46657763
Cup = pdLogChol (1)
(Intercept) 0.0004155194 0.02038429
Residual 0.0357570961 0.18909547

### Example 7.8 (p. 254) Power calculation for a 3x5 fixed-effects factorial design.
Falpha = gf(0.95,2,30)

Power pf (Falpha,2,30,ncp=20.8)

Power #Display the result

[1] 0.02079381

### Alternative solution combines two steps.
Power = 1l-pf(qgf(0.95,2,30),2,30,ncp=20.8)
Power

[1] 0.9792062

### Example 7.9 (p. 255) Another power calculation for the 3x5 factorial design.
Power = 1-pf(gf(0.95,4,30),4,30,ncp=12.5)
Power

[1] 0.7484825

### Example 7.10 (p. 256) Power calculation for a random effect.
Falpha = gf(0.95,7,32)

E.FA = 1+5*%(30/50)"2

Power = pf(E.FA/Falpha,32,7)

Power

[1] 0.5733428

<## Example 7.11 (p. 258) Power calculation for a fixed effect in a mixed model.
Power = 1-pf(gqf(0.95,2,6),2,6,ncp=4*3/2*(1/0.8)"2)
Power

[1] 0.551472
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# CHAPTER 8: Linear Regression
B i i

### Example 8.14 (p. 299) Linear regression analysis.

### Note: There are only five points in this data set, so some of the graphs are pretty pointless
### but the methods shown are still valid.

x=c(1,2,6,8,8)

y=c(3,7,14,18,23)

y.x=1lm(y~x) #Fits y as a linear function of x
plot(x,y);abline (y.x) #Creates the scatter plot with fitted line



summary (y.x)

#Complete summary of the model

Call:
Im(formula = y ~ x)
Residuals:

1 2 3 4 5
-0.5455 1.0909 -1.3636 -2.0909 2.9091
Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) 1.1818 2.0356 0.581 0.60226
X 2.3636 0.3501 6.751 0.00664 **
Signif. codes: 0 “***' 0.001 “**' 0.01 “*' 0.05 *.' 0.1 * ' 1

Residual standard error:
Multiple R-Squared: 0.9382,
F-statistic: 45.57 on 1 and 3 DF, p-value:
anova (y.x)

Analysis of Variance Table

Response: y

Df Sum Sg Mean Sg F value
X 1 245.818 245.818
Residuals 3 16.182 5.394

Signif. codes: 0 “***' 0.001 “**' 0.01 “*'

Pr (>F)
45.573 0.006639 **

2.322 on 3 degrees of freedom
Adjusted R-squared:
0.006639

0.9176

#ANOVA table

0.05 *." 0.1 "1

### The following functions provide access to other output from the model:

fitted.values(y.x)

1 2 3 4
3.545455

residuals (y.x)

1 2 3 4
-0.5454545 1.0909091 -1.3636364 -2.0909091

coefficients (y.x)

(Intercept) X
1.181818 2.363636

### Resdiduals diagnostic plots:
par (mfrow=c(2,2))
plot.lm(y.x)

#Vector of fitted values (y-hat)

5

5.909091 15.363636 20.090909 20.090909

#Vector of residuals

5
2.9090909

#Vector of regression coefficients

#Creates four diagnostic plots
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par (mfrow=c(1,1))
hist (residuals(y.x)) #Creates histogram of the residuals
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reshumisQy 0

plot (fitted.values(y.x),residuals(y.x)) #Plot of residuals (y-axis) vs. fitted values (x axis)



resiiumis(y 2)
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ggnorm(residuals(y.x)); ggline(residuals(y.x)) #Residuals normal plot

Normal G-G Plat

=l
1
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plot.ts (residuals(y.x)) #Residuals run chart (i.e. time series)

resiusisy x)

lag.plot (residuals(y.x),lags=1,do.lines=F, labels=F) #Lag-1l residuals plot



### Examples 8.7 (p. 289) and 8.10 (p. 292) Adding confidence and prediction intervals to the graph.

newx=data.frame (x=seq(min (x) ,max (x),diff (range (x))/100)) #Vector of new x values for plotting
newy.PL=predict (y.x, newdata=newx, interval="predict") #Find prediction limits for the new x values
newy.CL=predict (y.x, newdata=newx, interval="confidence") #Find confidence limits for the new x values
matplot (newx$x,cbind (newy.PL,newy.CL[,-1]),1lty=c(1,2,2,3,3),type="1", xlab="x",ylab="y") #Matrix plot

title("Polynomial fit with 95% confidence and prediction intervals.")

Palynominl Nitwith 359%conidence and pradic tion Intervels.

10
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### Example 8.21 (p. 307) Fitting a third-order polynomial.
x=c(8.9,8.7,0.1,5.4,4.3,2.4,3.4,6.8,2.9,5.6,8.4,0.7,3.8,9.5,0.7)
y=c(126,143,58,50,40,38,41,66,47,65,138,49,56,163,45)

y.x=lm(y~x+I(x"2)+I(x"3)) #The I() notation is required to identify the powers of x
plot (x,y) #Scatter plot



summary (y.x)

Call:
Im(formula = y ~ x + I(x"2) + I(x"3))
Residuals:

Min 10 Median 30 Max
-14.549 -5.385 -1.476 5.787 15.397
Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) 54.7826 7.9324 6.906 2.57e-05 ***
X -7.4856 8.1378 =-0.920 0.377
I(x"2) 0.6507 2.1505 0.303 0.768
I(x"3) 0.1431 0.1513 0.945 0.365
Signif. codes: 0 “***' (0.001 “**' 0.01 “*' 0.05 *.' 0.1 * ' 1

Residual standard error: 9.884 on 11 degrees of freedom

Multiple R-Squared: 0.9595, Adjusted R-squared: 0.9484
F-statistic: 86.76 on 3 and 11 DF, p-value: 6.121e-08
anova (y.x)
Analysis of Variance Table
Response: y
Df Sum Sqg Mean Sg F value Pr (>F)
X 1 18452.9 18452.9 188.8771 2.852e-08 ***
I(x"2) 1 6889.2 6889.2 70.5152 4.108e-06 ***
I(x"3) 1 87.3 87.3 0.8935 0.3648
Residuals 11 1074.7 97.7
Signif. codes: 0 “***' 0.001 “**' 0.01 “*' 0.05 *.' 0.1 * ' 1
### Example 8.21, Figure 8.14 (p. 308) Create the scatter plot with

### First
x.forplot=seq(min (x
b=coefficients (y.x)
y.forplot=b[1l]+b[2]*x.forplot+b[3]*x.forplot"2+b[4]*x.forplot"3
plot (x,y,pch=1)

lines (x.forplot,y.forplot, type="1"

title ("Third-order polynomial fit to example data.")

(brute force) method:
) ,max (x) ,diff (range (x))/100)

#Complete summary of the model

#ANOVA table of the model

the superimposed fitted function.

#Vector of x for plotting

#Cubic equation coefficients
#Vector of fitted y for plotting
#Make the scatter plot

#Add the fitted curve

#Add the title



Third-arder palynamisl 1t sxampis date.

### Example 8.21, Figure 8.14 (p. 308) Create the scatter plot with the superimposed fitted function.

### Second method using predict():
newx=data.frame (x=seq(min (x) ,max (x),diff (range (x))/100))
newy=predict (y.x, newdata=newx)

plot(x,y);lines (newx$x,newy);title ("Third-order polynomial fit to example data.")

#Vector of new x values for plotting
#Find y-hat for the new x values

Third-ardar palynamisl Nt emmpis dete.

### Example 8.21, Extra: Polynomial fit with 95% prediction interval.
newy=predict (y.x,newdata=newx, interval="predict") #Find the fit and prediction limits
matplot (newx$x,newy, lty=c(1,2,2),type="1", xlab = "x", ylab="y")

title("Polynomial fit with 95% prediction interval.")
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### Example 8.27, Figure 8.26 (p. 323) Matrix plot of response and uncoded predictors.
x1=c(10,10,10,10,100,100,100,100)

x2=c (40,40,50,50,40,40,50,50)

y=c(286,1,114,91,803,749,591,598)

x12=x1*x2

y.xlx2=data.frame (y,x1,x2,x12)

library(lattice)

pairs(y.x1x2)
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### Example 8.27, Figure 8.27 (p. 324) Multiple regression of y=f(xl,x2,x12) using uncoded variables.
MR.Uncoded=1m (y~x1+x2+x12)
summary (MR.Uncoded)

Call:
Im(formula = y ~ x1 + x2 + x12)

Residuals:
1 2 3 4 5 6 7 8
142.5 -142.5 11.5 -11.5 27.0 -=27.0 -3.5 3.5
Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 174.7778 520.2841 0.336 0.754
x1 13.2722 7.3214 1.813 0.144

x2 -2.5389 11.4912 -0.221 0.836



x12 -0.1561 0.1617 =-0.965 0.389

Residual standard error: 102.9 on 4 degrees of freedom
Multiple R-Squared: 0.9403, Adjusted R-squared: 0.8955
F-statistic: 20.99 on 3 and 4 DF, p-value: 0.006554

anova (MR.Uncoded)

Analysis of Variance Table

Response: y
Df Sum Sg Mean Sg F value Pr (>F)

x1 1 632250 632250 59.7033 0.001511 **
x2 1 24753 24753 2.3374 0.201027
x12 1 9870 9870 0.9320 0.389005

Residuals 4 42360 10590

Signif. codes: O “***' 0.001 “**' 0.01 “*' 0.05 ".' 0.1 *~ ' 1

### Example 8.27, Figure 8.28 (p. 325) Matrix plot of response and coded predictors.

cxl=(x1-55) /45 #Code the levels of x1 and x2
cx2=(x2-45)/5

cxl2=cxl*cx2

y.cxlcx2=data.frame (y,cxl,cx2,cxl2)

pairs(y.cxlcx2) #Matrix plot of y, cxl, cx2, and cxl2
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### Example 8.27, Figure 8.29 (p. 326) Multiple regression of y=f (cxl,cx2,cx12) using coded variables.
MR.Coded=1m(y~cxl+cx2+cx12)
summary (MR.Coded)

Call:
Im(formula = y ~ cxl + cx2 + cxl2)

Residuals:
1 2 3 4 5 6 7 8
142.5 -142.5 11.5 -11.5 27.0 -=27.0 -3.5 3.5
Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 404.12 36.38 11.107 0.000374 **x*
cxl 281.13 36.38 7.727 0.001511 **
cx2 -55.62 36.38 -1.529 0.201027
cx12 -35.13 36.38 =-0.965 0.389005
Signif. codes: 0 “***' 0.001 “**' 0.01 “*' 0.05 *.' 0.1 °~ ' 1

Residual standard error: 102.9 on 4 degrees of freedom
Multiple R-Squared: 0.9403, Adjusted R-squared: 0.8955
F-statistic: 20.99 on 3 and 4 DF, p-value: 0.006554

anova (MR.Coded)

Analysis of Variance Table

Response: y



Df Sum Sgq Mean Sq F value Pr (>F)

cxl 1 632250 632250 59.7033 0.001511 **
cx2 1 24753 24753 2.3374 0.201027
cx12 1 9870 9870 0.9320 0.389005

Residuals 4 42359 10590

Signif. codes: 0 “***' (0,001 “**' 0.01 “*' 0.05 *." 0.1 °~ "' 1

### Example 8.29, Figure 8.30 (p. 328) One-way ANOVA of Life=f (Dopant) .
Life=c(316,330,311,286,258,309,291,363,341,369,354,364,400,381,330,243,298,322,317,273)
Dopant=c ("A", "A", "A", "A" UAM, VB", MRT NRM NBN WRW WCH nCW MCH mCM o mCw wpw wpn wpn o wpn wpm)
Dopant=factor (Dopant)

plot (Life~Dopant)
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Life.Dopant=1m(Life~Dopant)
summary (Life.Dopant)

Call:
Im(formula = Life ~ Dopant)

Residuals:
Min 10 Median 30 Max
-47.6 -19.6 6.9 26.9 34.4
Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 300.20 13.68 21.951 2.27e-13 **%*
DopantB 34.40 19.34 1.779 0.09430 .
DopantC 65.60 19.34 3.392 0.00372 **
DopantD -9.60 19.34 -0.496 0.62638
Signif. codes: 0 “***' 0.001 “**' 0.01 “*' 0.05 *."' 0.1 * ' 1

Residual standard error: 30.58 on 16 degrees of freedom
Multiple R-Squared: 0.5416, Adjusted R-squared: 0.4557
F-statistic: 6.302 on 3 and 16 DF, p-value: 0.005005

### Note for above: R uses the first treatment group as the reference level, so its coefficient is zero by definition.
### This convention is different from some other programs where the reference level is the mean of all levels.

anova (Life.Dopant)
Analysis of Variance Table

Response: Life

Df Sum Sg Mean Sg F value Pr (>F)
Dopant 3 17679.2 5893.1 6.3019 0.005005 **
Residuals 16 14962.0 935.1

Signif. codes: 0 “***' 0.001 “**' 0.01 “*' 0.05 ".' 0.1 *~ ' 1

par (mfrow=c(2,2))
plot (Life.Dopant) #Residuals diagnostic plots
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### Example 8.30 (p. 331) Torque = f(Lube,Unit (Lube),Angle) by general linear model.
Unit=gl(6,4,72)

Angle=rep(c(180,270,360,450),18,each=1)

Lube=rep (c ("LAU", "MIS", "SWW") ,each=24)
Torque=c(72.1,103.6,129.9,173.9,77.2,122.6,162.9,210.1,61.1,88.9,130.3,157.8,75.8,116.4,153,
198.4,67.3,105.4,154.1,222.5,70.6,107.6,144.9,197.3,70.6,102.1,145.7,193.3,65.2,91.9,123.7,
162.9,58.9,83.5,117.9,156.3,71.4,101.4,158.5,204.2,73.6,111.6,165.1,198.4,63.3,92.6,130.7,
168.7,53.4,80.2,112.4,138,49.4,70.6,100.7,135.4,53.4,80.2,122.2,153.7,50.5,72.8,106.1,129.6,
57.8,85.3,120.4,154.8,51.6,71.7,108.3,147.9

Unit=factor (Unit)

Lube=factor (Lube)

InTorque=log (Torque)

library(lattice)

xyplot (InTorque~Angle|Lube)

### DO NOT USE THE aov () SOLUTION. IT USES SEQUENTIAL INSTEAD OF ADJUSTED SUMS OF SQUARES!!!
### LlnTorque.aov=aov (lnTorque~Lube*Angle+I (Angle”2)+Error (Lube/Unit)) #WRONG! !'!
### summary (lnTorque.aov)

InTorque.lme=1lme (fixed=1nTorque~Lube+Angle+Lube:Angle+I (Angle”2), random=~1|Lube/Unit)
summary (lnTorque. lme)

Linear mixed-effects model fit by REML



Data: NULL
AIC BIC logLik
-96.83632 -75.09245 58.41816

Random effects:

Formula: ~1 | Lube
(Intercept)

StdDev: 0.02239666

Formula: ~1 | Unit %in% Lube
(Intercept) Residual
StdDev: 0.08822825 0.04114529

Fixed effects: 1nTorque ~ Lube + Angle + Lube:Angle + I (Angle”2)
Value Std.Error DF t-value p-value

(Intercept) 3.284906 0.07352464 50 44.67762 0.0000
LubeMIS -0.068217 0.07156538 0 -0.95321 NaN
LubeSWW -0.316573 0.07156538 0 -4.42355 NaN
Angle 0.006128 0.00038627 50 15.86412 0.0000
I(Angle”2) -0.000004 0.00000060 50 -6.48073 0.0000
LubeMIS:Angle 0.000010 0.00011804 50 0.08366 0.9337
LubeSWW:Angle 0.000063 0.00011804 50 0.53705 0.5936
Correlation:
(Intr) LubMIS LubSWW Angle I (A"2) LMIS:A

LubeMIS -0.487

LubeSWW -0.487 0.500
Angle -0.786 0.079 0.079

I(Angle”2) 0.725 0.000 0.000 -0.976

LubeMIS:Angle 0.253 -0.520 -0.260 -0.153 0.000
LubeSWW:Angle 0.253 -0.260 -0.520 -0.153 0.000 0.500

Standardized Within-Group Residuals:
Min Q1 Med 03 Max
-2.12910987 -0.46837120 0.06757591 0.43190371 2.76024297

Number of Observations: 72
Number of Groups:
Lube Unit %in% Lube
3 18
Warning message:
NaNs produced in: pt(q, df, lower.tail, log.p)

par (mfrow=c(2,2))

plot (resid(lnTorque.lme)~fitted (lnTorque.lme))

plot (resid (1lnTorque.lme) ~Lube)

plot (resid(1lnTorque.lme)~Angle)

ggnorm (resid (1lnTorque.lme)); ggline (resid(lnTorque.lme))
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# CHAPTER 9: Two-Level Factorial Experiments
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### Example 9.2 (p. 351) Analysis of a 2”1 experiment.
xl=c(-1,-1,1,1)

y=c(47,51,21,17)

y.fit=1lm(y~x1)

plot (y~x1);abline(y.fit)

-10 -0s oo 0.s 1.0
n
summary (y.fit)

Call:
Im(formula = y ~ x1)

Residuals:

1 2 3 4

-2 2 2 -2
Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) 34.000 1.414 24.04 0.00173 **

x1 -15.000 1.414 -10.61 0.00877 **

Signif. codes: 0 “***' 0.001 “**' 0.01 “*' 0.05 *.' 0.1 * "1

Residual standard error: 2.828 on 2 degrees of freedom
Multiple R-Squared: 0.9825, Adjusted R-squared: 0.9738
F-statistic: 112.5 on 1 and 2 DF, p-value: 0.008772

anova (y.fit)

Analysis of Variance Table

Response: y
Df Sum Sg Mean Sqg F value Pr (>F)

x1 1 900 900 112.5 0.008772 **

Residuals 2 16 8

Signif. codes: 0 “***' (0.001 “**' 0.01 “*' 0.05 *.' 0.1 °~ ' 1

### Example 9.6 (p. 362) Analysis of a 272 experiment with two replicates.
xl=c(-1,-1,1,1,-1,-1,1,1)

x2=c(-1,-1,-1,-1,1,1,1,1)

x12=x1*x2

Y=c(61,63,76,72,41,35,68,64)

Y.data=data.frame (Y, x1,x2)

par (mfrow=c (1, 3)) #Plot the data
plot (Y~x1,pch=x2); abline (lm(Y~x1)

plot (Y~x2,pch=x1); abline (lm(Y~x2))

plot (Y~x12); abline(lm(Y~x12))
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Y.fit=lm(Y~x1*x2,data=Y.data)

summary (Y.fit)

Call:

Im(formula = Y ~ x1 * x2, data = Y.data

Residuals:
1 2 3 4 5 6 17
-1 1 2 -2 3-3 2

Coefficients:
Estimate
(Intercept) 60.000
x1 10.000
x2 -8.000
x1:x2 4.000

-2

Std. Error t value
1.061 56.569

1.061 9.428
1.061 -7.542
1.061 3.771

Signif. codes: 0 “***' 0.001 “**' 0.01

Residual standard error: 3 on 4 degrees

Multiple R-Squared:

0.9756,

Adjuste

F-statistic: 53.33 on 3 and 4 DF, p-va

anova (Y.fit) #ANOVA table

Analysis of Variance

Response: Y

Table

Df Sum Sgq Mean Sq F value

x1 1 800
x2 1 512
x1:x2 1 128
Residuals 4 36

800 88.889 0.0

512 56.889 0.0

128 14.222 0.0
9

Signif. codes: 0 “***' 0,001 “**' 0.01

Y.diagnostics=data.frame (Y, x1,x2,residuals(Y.fit),predict(Y.fit))

Y.diagnostics

40 4 00 OE 10
a2

)

Pr(>It])
5.85e-07 **x*
0.000706 ***
0.001655 **
0.019584 *

x'0.05 LT

of freedom

d R-squared: 0.9573

lue: 0.001106

Pr (>F)
007056 **x*
016552 **
195835 *

X' 0.05 "L

Y x1 x2 residuals.Y.fit. predict.Y.fit.

1 61 -1 -1
2 63 -1 -1
376 1 -1
4 72 1 -1
541 -1 1
6 35 -1 1
768 1 1
8 64 1 1

par (mfrow=c(2,2))
plot (Y.fit)

-1
1
2

-2
3

-3
2

-2

62
62
74
74
38
38
66
66

#linear model with main effects and interaction
#Table of regression coeficients

#Collect up the data, residuals, and fits

#Prep for 2x2 matrix of diagnostic plots
#Default diagnostic plots
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### Example 9.7 (p. 367) Refining the model for a 273 design.
A=c(1,1,-1,1,1,-1,-1,-1)
B=c¢(-1,1,-1,-1,1,-1,1,1)
¢=c¢(-1,1,-1,1,-1,1,-1,1)
Y=c(91,123,68,131,85,87,64,57)

par (mfrow=c(2,3)) #Graphs: two rows, three columns
AB=A*B;AC=A*C;BC=B*C #Interactions
plot (Y~A);abline (Im(Y~A)) ;plot (Y~B);abline (1lm(Y~B)) ;plot (Y~C) ;abline (1lm(Y~C)) #Plot the main effects
plot (Y~AB) ;abline (lm(Y~AB)) ;plot (Y~AC) ;abline (1m(Y~AC)) ;plot (Y~BC) ;abline (1m(Y~BC)) #... and the interactions
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Y.fit.0=1lm(Y~A*B*C) #Fits the full model

summary (Y.£fit.O0)

Call:
Im(formula = Y ~ A * B * C)

Residuals:
ALL 8 residuals are 0: no residual degrees of freedom!

Coefficients:
Estimate Std. Error t value Pr(>|t])



(Intercept) 88.25 NA NA NA

A 19.25 NA NA NA
B -6.00 NA NA NA
C 11.25 NA NA NA
A:B 2.50 NA NA NA
A:C 8.25 NA NA NA
B:C -3.50 NA NA NA
A:B:C 3.00 NA NA NA

Residual standard error: NaN on 0 degrees of freedom
Multiple R-Squared: 1, Adjusted R-squared: NaN
F-statistic: NaN on 7 and 0 DF, p-value: NA

anova (Y.fit.0)

Analysis of Variance Table

Response: Y

Df Sum Sg Mean Sg F value Pr (>F)

A 1 2964.5 2964.5
B 1 288.0 288.0
C 1 1012.5 1012.5
A:B 1 50.0 50.0
A:C 1 544.5 544.5
B:C 1 98.0 98.0
A:B:C 1 72.0 72.0
Residuals 0 0.0

Y.fit.1=1lm(Y~A*B*C-A:B:C) #Drops the ABC interaction
Y.fit.2=1lm(Y~A*B*C-A:B:C-A:B)
Y.fit.3=1lm(Y~A*B*C-A:B:C-A:B-B:C) #or equivalently: Y.fit.3=1lm(Y~A+B+C+A:C)
Y.fit.4=1m(Y~A+C+A:C)
Y.fit.5=1m(Y~A+C)
Y.fit.6=1m(Y~A)
Y.fit.7=1m(Y~1) #Model constant (mean) only
anova(Y.fit.0,Y.fit.1,Yy.fit.2,v.fit.3,v.fit.4,v.fit.5,v.fit.6,Y.fit.7) #Compare all eight models
Analysis of Variance Table
Model 1: Y ~ A * B * C
Model 2: Y ~ A * B * C - A:B:C
Model 3: Y ~A * B * C - A:B:C - A:B
Model 4: Y ~ A * B * C - A:B:C - A:B - B:C
Model 5: Y ~ A + C + A:C
Model 6: Y ~ A + C
Model 7: Y ~ A
Model 8: Y ~ 1
Res.Df RSS Df Sum of Sg F Pr (>F)
1 0 0.0
2 1 72.0 -1 -72.0
3 2 122.0 -1 -50.0
4 3 220.0 -1 -98.0
5 4 508.0 -1 -288.0
6 5 1052.5 -1 -544.5
7 6 2065.0 -1 -1012.5
8 7 5029.5 -1 -2964.5

### Example 9.10 (p. 379) Analysis of a 275 design.
Y=c(226,150,284,190,287,149,53,232,221,-30,76,270,59,-32,142,121,-43,200,123,137,1,
-51,187,265,233,217,71,187,207,40,179,266)
A=c(1,-1,-1,1,1,-1,1,1,-1,1,1,1,1,1,-1,1,-1,1,1,-1,-1,-1,1,-1,-1,-1,1,-1,1,-1,-1,-1
B=c¢(1,1,1,1,1,-1,-1,1,1,-1,-1,1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1
¢c=c(-1,1,1,1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,-1,1,-1,1,-1,-1
p=c(-1,-1,1,-1,-1,-1,1,1,1,1,1,1,-1,-1,1,-1,1,1,1,1,-1,-1,-1,-1,1,-1,-1,1,1,1,-1,-1
E=c(-1,1,-1,1,-1,1,-1,1,-1,1,1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,-1
Y.fit=1lm(Y~A+B+C+D+E+A:B+A:C+A:D+A:E+B:C+B:D+B:E+C:D+C:E+D:E)

summary (Y.fit)

)
)
)
)
)

Call:
Im(formula = Y ~A + B+ C+ D+ E + A:B + A:C + A:D + A:E +
B:C + B:D + B:E + C:D + C:E + D:E)

Residuals:
Min 10 Median 30 Max
-34.5000 -6.4219 -0.4375 9.0625 32.5625

Coefficients:
Estimate Std. Error t value Pr(>|t]|

(Intercept) 144.28125 3.39577 42.489 < 2e-16 ***
A -4.28125 3.39577 -1.261 0.225471
B 82.09375 3.39577 24.175 5.05e-14 ***
C -29.90625 3.39577 -8.807 1.56e-07 ***
D 1.46875 3.39577 0.433 0.671134
E -27.21875 3.39577 -8.015 5.41e-07 ***



A:B 2.78125 3.39577 0.819 0.424799

A:C 14.53125 3.39577 4.279 0.000575 **x*
A:D -0.09375 3.39577 -0.028 0.978316

A:E -1.03125 3.39577 -0.304 0.765280

B:C 32.65625 3.39577 9.617 4.72e-08 ***
B:D 1.40625 3.39577 0.414 0.684286

B:E 0.34375 3.39577 0.101 0.920626

C:D 4.28125 3.39577 1.261 0.225471

C:E -15.78125 3.39577 -4.647 0.000268 ***
D: 5.46875 3.39577 1.610 0.126847
Signif. codes: O “***' 0.001 “**' 0.01 “*' 0.05 ".' 0.1

Residual standard error: 19.21 on 16 degrees of freedom

Multiple R-Squared: 0.9819,
F-statistic: 57.7 on 15 and 16

anova (Y.fit)
Analysis of Variance Table

Response: Y

Adjusted R-squared: 0.9648
DF, p-value: 4.702e-11

Df Sum Sqg Mean Sg F value Pr (>F)
A 1 587 587 1.5895 0.2254709
B 1 215660 215660 584.4452 5.052e-14 ***
C 1 28620 28620 77.5617 1.560e-07 ***
D 1 69 69 0.1871 0.6711342
E 1 23708 23708 64.2481 5.408e-07 ***
A:B 1 248 248 0.6708 0.4247991
A:C 1 6757 6757 18.3117 0.0005750 **x*
A:D 1 0.2812 0.2812 0.0008 0.9783163
A:E 1 34 34 0.0922 0.7652801
B:C 1 34126 34126 92.4818 4.718e-08 ***
B:D 1 63 63 0.1715 0.6842859
B:E 1 4 4 0.0102 0.9206265
C:D 1 587 587 1.5895 0.2254709
C:E 1 7970 7970 21.5976 0.0002683 ***
D:E 1 957 957 2.5936 0.1268468
Residuals 16 5904 369
Signif. codes: 0O “***' 0.001 “**' 0.01 “*' 0.05 ".' 0.1
par (mfrow=c(2,2))
plot (Y.fit)
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par (mfrow=c(1,1)
coeff=coefficients(Y.fit) [2:16]
ggnorm (coeff,main="Coefficients

Qs . ramier

Normal Plot");ggline (coeff)

#Default residuals plots

#The coefficients without the constant
#Normal plot the coefficients
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resid=residuals (Y.fit)

plot (resid, type="b") ;xref=c (1, length(resid));yref=c(0,0);lines (xref, yref)
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old.par = par(no.readonly = TRUE)
par (mfrow=c(1l,5),bty="n", yaxt="n")
plot (resid~A) ;lines(c(-1,1),c(0,0))
plot (resid~B,ylab="");lines(c(-1,1),c(0,0)
plot (resid~C,ylab="");lines(c(-1,1),c(0,0))
plot (resid~D,ylab="");lines(c(-1,1),c(0,0)
plot (resid~E, ylab="");lines(c(-1,1),c(0,0)

#Residuals run chart

#Five plots in one row
#Residuals versus A
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par (old.par)
par (mfrow=c(1l,5),xaxt="n",bty="n")
plot (aggregate (Y, list (A) ,mean
plot (aggregate (Y, list ,mean

plot (aggregate (Y, list
plot (aggregate (Y, list

,mean
,mean
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par (old.par)

type="b",xlab="E",ylab="",ylim=c (min (

#Five plots 1in one row

( ), type="b",xlab="A",ylab="Y", ylim=c (min(Y) ,max (Y))) #Main effects plots

( ( (B) ), type="b",xlab="B",ylab="",ylim=c (min (Y) ,max (Y))
plot (aggregate (Y, 1list (C) ,mean), type="b",xlab="C",ylab="",ylim=c (min (Y) Y))
( ( (D) ), type="b",xlab="D", ylab="",ylim=c (min (Y) ,max (Y))

( ( (E) ) (min(Y) x(Y))

;max (Y)

)
)
)
)

)

,ma

#Restore old graphics parameters

### Example 9.12 (p. 393) Power calculation for a 27k design.

power=function (k,r,delta, sigma)

{

N=r*2"k

lambda=N/2/2* (delta/sigma) "2

dfmodel=k+k* (k-1)/2

dferror=N-1-dfmodel

Falpha=qgf (0.95,1,dferror)

pf (Falpha, 1l,dferror, lambda, lower.tail=FALSE)
}

power (4,6,400,800)

#Find the power for a 27k design with r replicates

#Total number of runs

#Noncentrality parameter

#Main effects and two factor interactions only
#Errror degrees of freedom

#F (alpha=0.05) assumed

#The power to detect effect delta

#Gives the answer to the example



[1] 0.677884

### Example 9.13 (p. 394) Sample size calculation for a 2"k design.

r=c(1:15) #Guess that the required r is in this range
P=power (4,r,400,800) #Find the powers associated with r
plot (P~r);lines(c(1,15),c(0.90,0.90)) #Use plot to find min r that gives power > 0.90
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power (4,11,400,800) #Exact power for r=11 replicates
[1] 0.909437

### Example 9.17 (p. 397) Find the number of replicates to quantify a coefficient.

replicates=function (k,delta, sigma) #k is the number of variables in the 27k experiment
{
dfmodel=k+k* (k-1)/2 #Main effects and two-factor interactions
RHS=(1.96*sigma/delta)"2/2"k #For priming the loop, will always give low r
r=trunc (RHS) #Conservative integer starting point
while (r<RHS) #while (r is too small)

{

r=r+1 #Increment r

dferror=r*27k-1-dfmodel #New value

RHS=(-gt (0.025,dferror) *sigma/delta) *2/2"k #Assumes alpha = 0.05

}
r #Report the result
}
replicates (3,20,80) #The answer in the book, r=8, is just barely small

#because (r = 8) < (RHS = 8.08). The right answer is
#r=9, as this function confirms.
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### The function TLFF() below creates two-level balanced full factorial 2"k experiment designs for 2 to 7 factors with
### two-factor interactions. Use rbind() to replicate the design and use subset() to create the fractional factorial
### designs.

### Example: Create and analyze a 274 full factorial design with three replicates.
des.mat=TLFF (4) #Create the 274 full-factorial design
des.mat

A B C D AB AC AD BC BD CD

-1-1 1-1 1-1 1-1 1-1
-1 -1-1-1 1

-11 1-1-1-1 1 1-1-1
-11 1 1-1-1-1 1 1 1

W J oy U s W
I
iy
I
iy
=
=
=

0 1-1-1 1-1-1 1 1-1-1
1 1-1 1-1-1 1-1-1 1-1
2 1-1 1 1-1 1 1-1-1 1



3 1 1-1-1 1-1-1-1-1 1

4 1 1-1 1 1-1 1-1 1-1

5 1 1 1-1 1 1-1 1-1-1

16 1 1 1 1 1 1 1 1 1 1

cor (des.mat) #Check the correlation matrix
A B C D AB AC AD BC BD CD

A 1000 O O O O O O

B 0100 O O O O 0 O

c 0010 O O O O 0 O

D 0001 0O 0O O O O O

ABOOOO 1 O O O 0 O

ACOOOO O 1 O 0 0 O

ADOOOO O O 1 0 0 O

BCOOOO O O O 1 0 O

BDOOOO O O O O 1 O

cboo0oo00 O O O 0 0 1

des.mat=rbind(des.mat,des.mat,des.mat) #Three replicates

Block=gl (3,16,48) #Block identifier

Y=rnorm (48) #Create a column of response data

Y.des.mat=cbind (des.mat,Block,Y) #Bind the design matrix, block identifier, and

response

Y.fit=1lm(Y~Block+A*B*C,data=Y.des.mat) #Create the model

summary (Y. fit)

Call:
Im(formula = Y ~ Block + A * B * C, data = Y.des.mat)

Residuals:
Min 10 Median 30 Max
-1.49864 -0.56533 -0.03205 0.50933 1.54858

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) -0.420217 0.199397 =-2.107 L0417 *

(

0
Block2 0.363708 0.281991 1.290 0.2049
Block3 0.312395 0.281991 1.108 0.2749
A -0.165889 0.115122 -1.441 0.1578
B -0.006415 0.115122 -0.056 0.9559
C 0.064719 0.115122 0.562 0.5773
A:B -0.291043 0.115122 -2.528 0.0157 *
A:C -0.220582 0.115122 -1.916 0.0629
B:C 0.034265 0.115122 0.298 0.7676
A:B:C -0.171697 0.115122 -1.491 0.1441
Signif. codes: O “***' 0.001 “**' 0.01 “*' 0.05 ".' 0.1 *~ ' 1

Residual standard error: 0.7976 on 38 degrees of freedom
Multiple R-Squared: 0.3056, Adjusted R-squared: 0.1411
F-statistic: 1.858 on 9 and 38 DF, p-value: 0.08914

FHAFFHE A R R R R
TLFF = function (k)

#The function TLFF() creates two-level balanced full factorial 27k experiment designs for 2 to 7 factors with
#two-factor interactions. Use rbind() to replicate the design and use subset() to create the fractional factorial
#designs. See also ffDesMatrix (BHH2) and ffFullMatrix (BHH2).

#By PGMathews, 21March05, paul@mmbstatistical.com.

{

if (k<2 || k>7) print("Error: k out of range.");return

N=2"k #Number of runs: N = 27k
A=rep(c(-1,1),1,each=N/2) #N/2 -1's followed by N/2 1's
B=rep(c(-1,1),2,each=N/4)

AB=A*B #AB interaction
design.matrix=data.frame (A,B,AB) #Combine in a data.frame

if (k>2) #Then add third variable (C)

{
C=rep(c(-1,1),4,each=N/8)
AC=A*C; BC=B*C
design.matrix=data.frame(A,B,C,AB,AC,BC)
}
if (k>3) #Then add fourth variable (D)
{
D=rep(c(-1,1),8,each=N/16
AD=A*D; BD=B*D; CD=C*D
design.matrix=data.frame(A,B,C,D,AB,AC,AD,BC,BD,CD)
}
if (k>4) #Then add fifth variable (E)
{
E=rep(c(-1,1),16,each=N/32)
AE=A*E; BE=B*E; CE=C*E; DE=D*E
design.matrix=data.frame(A,B,C,D,E,AB,AC,AD, AE,BC,BD,BE,CD,CE, DE)
}



if (k>5) #Then add sixth variable (F)
{
F=rep(c(-1,1),32,each=N/64)
AF=A*F;BF=B*F;CF=C*F; DF=D*F; EF=E*F
design.matrix=data.frame(?,B,C,D,E, F,AB,AC,AD, AE, AF,BC,BD, BE, BF,CD, CE, CF, DE, DF, EF)
}
if (k>6) #Then add seventh variable (G)
{
G=rep(c(-1,1),64,each=N/128)
AG=A*G;BG=B*G;CG=C*G; DG=D*G; EG=E*G; FG=F*G
design.matrix=data.frame(?,B,C,D,E,F,G,AB,AC,AD, AE, AF, AG, BC, BD, BE, BF, BG, CD, CE, CF, CG, DE, DF, DG, EF, EG, FG)
}
design.matrix
#End function

}
FREFHEE AR R A R R R R R R R R R A R R R R
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# CHAPTER 10: Fractional-Factorial Designs
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### Example 10.5 (p. 419) Analysis of a 27(5-1) half-fractional factorial experiment.
### Start with the data from Example 9.10:
Y=c(226,150,284,190,287,149,53,232,221,-30,76,270,59,-32,142,121,-43,200,123,137,1,
-51,187,265,233,217,71,187,207,40,179,266
A=c(1,-1,-1,1,1,-1,1,1,-1,1,1,1,1,1,-1,1,-1,1,1,-1,-1,-1,1,-1,-1,-1,1,-1,1,-1,-1,-1)
B=c(1,1,1,1,1,-1,-1,1,1,-1,-1,1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,1,1,-1,1,1,-1,-1,1)
¢=c(-1,1,1,1,1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,1,1,-1,-1,1,1,-1,1,-1,-1,-1,1,-1,1,-1,-1)
p=c¢(-1,-1,1,-1,-1,-1,1,1,1,1,1,1,-1,-1,1,-1,1,1,11,-1,-1,-1,-1,1,-1,-1,1,1,1,-1,-1)
E=c(-1,1,-1,1,-1,1,-1,1,-1,1,1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,-1)

Y.full.factorial=data.frame(Y,A,B,C,D,E) #Catch all of the data
rm(Y,A,B,C,D,E) #Clean up
Y.half.fraction=subset (Y.full.factorial, (A*B*C*D==E) ) #Create the subset
attach(Y.half.fraction)

AB=A*B;AC=A*C; AD=A*D; AE=A*E; BC=B*C;BD=B*D; BE=B*E;CD=C*D; CE=C*E; DE=D*E #Make the interactions

Terms=data.frame (3,B,C,D,E,AB,AC,AD, AE, BC,BD, BE, CD, CE, DE)
cor (Terms)

AB AC AD AE BC BD BE CD CE DE
0 0 0 0 0O 0 0 0 O

B
c
AD
AE
BC
BD
BE
CD
CE
DE
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[eNoNoNoNoNoNoNoNoNoNoNoNo ol -
[eNeoNeoNeoNoNoNoNoNoNoNol S “AeNeohv]

E
0
0
0
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1
0
0
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0
0
0
0
0
0
0
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HOOOODOODOODOOOooOo

Y.fit=1lm(Y~A+B+C+D+E+AB+AC+AD+AE+BC+BD+BE+CD+CE+DE)
summary (Y.fit)

Call:
Im(formula = Y ~A + B+ C+ D+ E + AB + AC + AD + AE + BC +
BD + BE + CD + CE + DE)

Residuals:
ALL 16 residuals are 0: no residual degrees of freedom!

Coefficients:
Estimate Std. Error t value Pr(>|t])
(Intercept) 142.5625 NA NA NA
-5.1875 NA NA NA
B 84.1875 NA NA NA
C -30.0625 NA NA NA
D 1.4375 NA NA NA
E -27.5625 NA NA NA
AB -1.3125 NA NA NA
AC 19.6875 NA NA NA
AD -4.8125 NA NA NA
AE -2.0625 NA NA NA
BC 33.5625 NA NA NA
BD 2.8125 NA NA NA
BE -6.6875 NA NA NA
CD 9.5625 NA NA NA

CE -16.1875 NA NA NA



DE 0.0

Residual standard error: NaN on 0 degrees of freedom
Adjusted R-squared:

Multiple R-Square

625

d:

1,

NA

F-statistic: NaN on 15 and 0 DF,

anova (Y.fit)

Analysis of Variance Table

Response: Y

NA

NA

p-value: NA

Df Sum Sg Mean Sg F value Pr (>F)

A 1 4
B 1 1134
C 1 144
D 1

E 1 121
AB 1

AC 1 62
AD 1 3
AE 1

BC 1 180
BD 1 1
BE 1 7
CD 1 14
CE 1 41
DE 1 0.06
Residuals 0

coeff=coefficients(Y.fit) [2:

31
01
60

43
11340
1446

1
1
0

ggnorm (coeff) ;ggline (coeff)

16]

Normal G-G Plat

Trewre lod Quanlies

Y.fit=1m (Y~A+B+C+D+E+AC+BC+CD+CE)

summary (Y.fit)

Call:

Im(formula = Y ~A +B + C+ D+ E + AC + BC + CD + CE)

Residuals:

Min 10 Median
1.375

-12.000 -8.844

6.

3Q
406

Coefficients:

Estimate Std. Error
(Intercept) 142.562 3.692
A -5.188 3.692
B 84.188 3.692
C -30.062 3.692
D 1.437 3.692
E -27.562 3.692
AC 19.687 3.692
BC 33.562 3.692
CD 9.562 3.692
CE -16.187 3.692
Signif. codes: 0 “***' (0.001

13.

Max
500

t value

Skx v

.617
.405
.804
.143
.389
.466
.333
.091
.590
.385

0.01

Pr(>It])
2.01le-08
0.209576
4.66e-07
0.000184
0.710438
0.000298
0.001773
9.94e-05
0.041198
0.004644

Tx'0.05

*x Kk

* kK
* kK

** Kk

* *

** Kk

**

#The coefficients without the constant
#Normal plot the coefficients



Residual standard error: 14.77 on 6 degrees of freedom
Multiple R-Squared: 0.9924, Adjusted R-squared: 0.9809
F-statistic: 86.8 on 9 and 6 DF, p-value: 1.163e-05
anova (Y.fit)

Analysis of Variance Table

Response: Y

f Sum Sg Mean Sg F value Pr (>F)
A 1 431 431 1.9745 0.2095758
B 1 113401 113401 520.0370 4.657e-07 **x*
C 1 14460 14460 66.3116 0.0001844 ***
D 1 33 33 0.1516 0.7104376
E 1 12155 12155 55.7412 0.0002979 ***
AC 1 6202 6202 28.4394 0.0017733 **
BC 1 18023 18023 82.6509 9.945e-05 ***
CD 1 1463 1463 6.7094 0.0411983 *
CE 1 4193 4193 19.2264 0.0046440 *~*
Residuals 6 1308 218
Signif. codes: 0O “***' 0.001 “**' 0.01 “*' 0.05 *.' 0.1 * ' 1
par (mfrow=c(2,2))
plot (Y.fit)
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### Example 10.8 (p. 424) Analysis of NIST sonoluminescence screening experiment in seven variables.
xl=c(-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,1)

x2=c(-1,-1,1,1,-1,-1,1,1,-1,-1,1,1,-1,-1,1,1)

x3=c(-1,-1,-1,-1,1,1,1,1,-1,-1,-1,-1,1,1,1,1)

x4=c(-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1)

%x5=c(-1,-1,1,1,1,1,-1,-1,1,1,-1,-1,-1,-1,1,1)

x6=C (- l,1,—1,1,1,—1,1,—1,1,—1,1,—1,—1,1,—1,1)

x7=c(-1,1,1,-1,1,-1,-1,1,-1,1,1,-1,1, 1,1)
:c(80.6,66.1,59.1,68.9,75.1,373.8,66.8,79.6,114.3,84.1,68.4,88.1,78.1,327.2,77.6,61.9)
x12=x1*x2;x13=x1*x3;x14=x1*x4;x15=x1*x5;x16=x1*x6;x17=x1*x7 #Create the interactions

xX23=x2*x3;x24=x2*x4; x25=x2*x5;x26=x2*x06;x27=x2*x7
x34=x3*x4;x35=x3*x5;x36=x3*x6;x37=x3*x7
x45=x4*x5;x46=x4*x6;x47=x4*x7

x56=x5*x6;x57=x5*x7

x67=x6*x7
X=data.frame (x1,x2,x3,x4,x5,x6,x7,x12,x13,x14,x15,x16,x17,%x23,%x24,%x25,%x26,x27,x34,x35,x36,x37,x45,x46,x47,%x56,%x57,%x67)
cor (X) #Correlation matrix

x1l x2 x3 x4 x5 x6 x7 x12 x13 x14 x15 x16 x17 x23 x24 x25 %26 %27 %34 %35 x36 x37 x45 x46 x47 x56 x57 %67
x1 1 0 0 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x2 0 1 0 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x3 0 0 1 0 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x4 0 0 0o 1 0 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x5 0 0 0 0o 1 0 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x6 0 0 0o 0o 0 1 O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
x7 0 0 0o 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
xl2 0 0 O O O 0 © 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0



x13 0 0 0 0 0 0 O 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
x4 0 0 0 0 O O O 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
x5 0 0 0 0 O 0 O 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
xl6 0 0 O O O 0 O 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
xl7 0 0 O O O 0 O 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
x23 0 0 0 O 0 0 O 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
x24 0 0 O O O 0 O 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1
x25 0 0 0 0O 0 0 © 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
x26 0 0 0 0 O O O 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
x27 0 0 0 0 0 O O 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
x34 0 0 0 0 0 0 O 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0
x35 0 0 0 0 O O O 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1
x36 0 0 O O O 0 O 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
x37 0 0 0O O O 0 O 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
x45 0 0 O O 0 0 © 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
x46 0 O O O O 0 O 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0
x47 0 0 O O O 0 © 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
x56 0 0 0 0 O O O 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0
x57 0 0 0 0 O O O 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0
x67 0 0 0 0 O O O 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1
Y.fit=1m(Y~x1+x2+x3+x4+x5+x6+x7+x124+x13+x14+x15+x16+x17+x24) #A11 other terms are confounded
summary (Y. fit)
Call:
Im(formula = Y ~ x1 + x2 + x3 + x4 + x5 + x6 + x7 + x12 + x13 +

x14 + x15 + x16 + x17 + x24)
Residuals:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

-2.919 2.919 2.919 -2.919 -2.919 2.919 2.919 -2.919 2.919 -2.919 -2.919 2.919 2.919 -2.919 -2.919 2.919

Coefficients:
Estimate Std. Error t value Pr(>|t])

(

(Intercept) 110.6062 2.9187 37.895 0.0168 *
x1 33.1063 2.9187 11.343 0.0560 .
x2 -39.3062 2.9187 -13.467 0.0472 *
x3 31.9063 2.9187 10.931 0.0581
x4 1.8562 2.9187 0.636 0.6394
x5 3.7438 2.9187 1.283 0.4216
x6 -4.5188 2.9187 -1.548 0.3651
x7 -39.0562 2.9187 -13.381 0.0475 *
x12 -29.7812 2.9187 -10.203 0.0622 .
x13 35.0063 2.9187 11.994 0.0530
x14 -5.2437 2.9187 -1.797 0.3233
x15 -0.2813 2.9187 -0.096 0.9388
x16 -8.1688 2.9187 -2.799 0.2185
x17 -31.7313 2.9187 -10.872 0.0584
x24 0.8437 2.9187 0.289 0.8209
Signif. codes: O “***' 0.001 “**' 0.01 “*' 0.05 “.' 0.1 *~ ' 1

Residual standard error: 11.67 on 1 degrees of freedom
Multiple R-Squared: 0.999, Adjusted R-squared: 0.9849
F-statistic: 70.74 on 14 and 1 DF, p-value: 0.09296

anova (Y.fit)

Analysis of Variance Table

Response: Y

Df Sum Sg Mean Sg F value Pr (>F)
x1 1 17536.4 17536.4 128.6549 0.05598 .
X2 1 24719.7 24719.7 181.3550 0.04719 *
%3 1 16288.1 16288.1 119.4972 0.05808
x4 1 55.1 55.1 0.4045 0.63939
x5 1 224.3 224.3 1.6452 0.42157
%6 1 326.7 326.7 2.3969 0.36510
x7 1 24406.3 24406.3 179.0553 0.04749 *
x12 1 14190.8 14190.8 104.1099 0.06219
x13 1 19607.0 19607.0 143.8459 0.05296
x14 1 440.0 440.0 3.2277 0.32334
x15 1 1.3 1.3 0.0093 0.93884
x16 1 1067.7 1067.7 7.8328 0.21847
x17 1 16110.0 16110.0 118.1900 0.05839
%24 1 11.4 11.4 0.0836 0.82085
Residuals 1 136.3 136.3
Signif. codes: 0 “***' 0.001 “**' 0.01 “*' 0.05 *.' 0.1 * ' 1
Y.fit=1lm(Y~x1+x2+x3+x7+x12+x13+x17) #These are, or are almost, significant

summary (Y. fit)

Call:
Im(formula = Y ~ x1 + x2 + x3 + x7 + x12 + x13 + x17)



Residuals:
Min 10 Median 30 Max
-2.330e+01 -8.887e+00 3.331le-16 8.887e+00 2.330e+01

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 110.606 4.204 26.307 4.68e-09 **x*
x1 33.106 4.204 7.874 4.8%9e-05 ***
%2 -39.306 4.204 -9.349 1.40e-05 **x*
x3 31.906 4.204 7.589 6.37e-05 ***
x7 -39.056 4.204 -9.289 1.47e-05 **x*
x12 -29.781 4.204 -7.083 0.000104 **x*
x13 35.006 4.204 8.326 3.27e-05 ***
x17 -31.731 4.204 -7.547 6.63e-05 **x*
Signif. codes: 0 “***' 0.001 “**' 0.01 “*' 0.05 *.' 0.1 * ' 1

Residual standard error: 16.82 on 8 degrees of freedom
Multiple R-Squared: 0.9833, Adjusted R-squared: 0.9686
F-statistic: 67.11 on 7 and 8 DF, p-value: 1.784e-06
anova (Y.fit)

Analysis of Variance Table

Response: Y

Df Sum Sg Mean Sq F value Pr (>F)
x1 1 17536.4 17536.4 62.003 4.894e-05 **x*
x2 1 24719.7 24719.7 87.401 1.400e-05 **x*
%3 1 16288.1 16288.1 57.590 6.372e-05 **x*
x7 1 24406.3 24406.3 86.292 1.468e-05 ***
x12 1 14190.8 14190.8 50.174 0.0001037 ***
%13 1 19607.0 19607.0 69.324 3.272e-05 ***
x17 1 16110.0 16110.0 56.959 6.626e-05 ***
Residuals 8 2262.7 282.8
Signif. codes: 0 “***' 0.001 “**' 0.01 “*' 0.05 *.' 0.1 * ' 1
plot(Y.fit)
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### Example 10.10 (p. 430) Creation of a resolution IV design by folding.

A=c(-1,-1,-1,-1,1,1,1,1) #Base design: 273 in A, B, C
B=c(-1,-1,1,1,-1,-1,1,1)

C=c(-1,1,-1,1,-1,1,-1,1)

D=A*B;E=A*C; F=B*C; G=A*B*C #Apply the generators
A=c (A, -A) ;B=c(B,-B);C=c(C,-C);D=c(D,-D) ;E=c(E, -E) ; F=c (F, -F) ; G=c (G, -G) #Create the fold-over design
AB=A*B; AC=A*C;AD=A*D; AE=A*E; AF=A*F; AG=A*G #Create the interactions

BC=B*C;BD=B*D; BE=B*E; BF=B*F;BG=B*G
CD=C*D; CE=C*E; CF=C*F;CG=C*G
DE=D*E; DF=D*F; DG=D*G

EF=E*F;EG=E*G

FG=F*G



data.frame(A,B,C,D,E,F,G,AB, AC,AD, AE, AF, AG, BC, BD, BE, BF, BG, CD, CE, CF, CG, DE, DF, DG, EF, EG, FG)

Terms

#Inspection of the correlation matrix shows that the fold-over design is resolution IV.

cor (Terms)

A BCDETF G AB AC AD AE AF AG BC BD BE BF BG CD CE CF CG DE DF DG EF EG FG

1000000O0
0100000O0
0010000
0001000
0000100
0000O0T1IO0
0000O0O0T1
AB 0O O0OOOOOO

0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1
0
0

A

B
C
D
E
F
G

AC 0O00O0O0O0O

AD O 0OOOOOO

AE 0 00O0O0O0O

AF 0 00O0O0O0O

AG 0O0O0O0O0O0O

BCOOOOOOO

BDOOOOOOO

BEOOOOOOO

BF 000O0O0O0O

BGOOOOOOO

CDOO0OO0OO0OO0OO0O

CE0OO0OO0OO0OOO

CF00O0O0O0OOO

CG0OO0OO0OO0OO0OO0OO

DE O O0OO0O0OO0O0O

DF O 0O 0O0O0O0O

DG 0O 0 00O0O0O0

EF 0000O0O0O

EGO0OO0OO0O0O0O0O

FG 0O 0OO0O0O0O0O

Power calculation for a fractional factorial design with blocking.

433)

(p-

### Example 10.11

### Start from the power function created in Example 9.12 and make appropriate modifications:

design with r replicates in blocks

#Find the power for a 2" (k-p)

function(k,p,r,dfmodel,delta, sigma)

power

#Total number of runs

r*2” (k-p)

N=

#Noncentrality parameter

N/2/2* (delta/sigma) *2
N-1-dfmodel

lambda
dferror

#Errror degrees of freedom

assumed

0.05)
#The power to detect effect delta

#F (alpha

qgf (0.95,1,dferror)
pf (Falpha, 1l,dferror, lambda, lower.tail

Falpha

FALSE)

}

power (5,2,4,10,100,80)

#dfmodel

(blocks)

+ (interactions) +

(main effects)

0.9206987

[1]

function from Chapter 9 to create and analyze an experiment using two replicates of a

Use the TLFF ()

### Example:

27 (7-4)

### sixteenth-fractional factorial design.

des.mat
des.mat

#Create the 277 full-factorial design

TLEFF (7)

#Use the generators to isolate the sixteenth

A*B*C) )

==B*C & G

A*C & F

A*B & E

subset (des.mat, (D

fraction

#Check the correlation matrix

cor (des.mat)

A BCDETFGAB AC AD AE AF AG BC BD BE BF BG CD CE CF CG DE DF DG EF EG FG

1000000O0
010000O00O0
0010000
0001000
0000100
0000O0OT1IO0
0000O0O0CT1
ABOOO1O0O00O

0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
1

A

B
C
D
E
F
G

ACOO0OO0O01O00

ADO100O0O0O

AE 0010000

AF 000O0O0O0T1

AGO0OO0OO0OOT1O0

BCOOOOO1O0

BD100OOOOO

BEOOOOOOT1

BF 0O0O10000O0

BG0OOOO1O0O0

COD0OO0OO0O0O0O0T1

CE1000O0O0O

CF010000O0O

CG0OO0OO0O10O0O0

DE O OO0OO0OO0O10

DF 0 000100

DG 0O 010000

EF 0001000



EGo100000 O O 1 0 0O O O OOOOOOT11I 0O O0O0O0O0 1 O

FG1 000000 O O O OO OOT11T O0OOOOT1TO0 0 O0O0 00 01

des.mat=rbind (des.mat,des.mat) #Two replicates

Block=gl(2,8,16) #Block identifier

Y=rnorm(16) #Create a column of response data
Y.des.mat=cbind(des.mat,Block,Y) #Bind the design matrix, block identifier,
response

Y.fit=Im(Y~Block+A+B+C+D+E+F+G,data=Y.des.mat) #Create the model

summary (Y.fit)

Call:
Im(formula = ¥ ~ Block + A+ B+ C+ D+ E + F + G, data = Y.des.mat)

Residuals:
Min 10 Median 30 Max
-1.034e+00 -4.459e-01 1.388e-17 4.459e-01 1.034e+00

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -0.377205 0.335707 -1.124 0.2982
Block2 0.479596 0.474761 1.010 0.3460
A -0.511302 0.237381 =-2.154 0.0682
B 0.057109 0.237381 0.241 0.8168
C -0.206127 0.237381 -0.868 0.4140
D -0.233388 0.237381 -0.983 0.3583
E 0.284044 0.237381 1.197 0.2704
F -0.007643 0.237381 -0.032 0.9752
G -0.265588 0.237381 -1.119 0.3001
Signif. codes: 0 “***' 0.001 “**' 0.01 “*' 0.05 *.' 0.1 * ' 1

Residual standard error: 0.9495 on 7 degrees of freedom
Multiple R-Squared: 0.5912, Adjusted R-squared: 0.124
F-statistic: 1.265 on 8 and 7 DF, p-value: 0.3846

FhEHEEE AR R R R A R R A R R R R R R R R R R R R
# CHAPTER 11: Response Surface Designs

FHEFHEEF AR R R A R R R R R R R R R
### Example 11.9 (p. 460) Optimization of lamp lumens as a function of three geometry variables.

Lumens=c (4010,5135,5879,6073,3841,4933,5569,5239,5017,5243,6412,6210,5805,5624,5843,4746,6052,6105,6232,4549,
4080,5006,5438,4903,6129,6234,6860,6794,5780,6053)

r=c(-1,-1,1,1,-1,-1,1,1,0,0,0,0,0,0,0,-1,-1,1,1,-1,-1,1,1,0,0,0,0,0,0,0)
B=c(-1,1,-1,1,0,0,0,0,-1,-1,1,1,0,0,0,-1,1,-1,1,0,0,0,0,-1,-1,1,1,0,0,0)
¢=c(0,0,0,0,-1,1,-1,1,-1,1,-1,1,0,0,0,0,0,0,0,-1,1,-1,1,-1,1,-1,1,0,0,0)

Block=gl(2,15,30)
Run=c(9,8,10,12,3,15,6,14,13,5,1,11,4,7,2,26,16,27,19,23,30,22,18,17,25,20,29,21,24,28)
AB=A*B; AC=A*C;BC=B*C; AA=A*A; BB=B*B; CC=C*C

Terms=data.frame (A,B,C,AB,AC,BC,AA,BB,CC)

cor (Terms)

A B C AB AC BC AA BB cc
A 100 O O O 0.00000000 0.00000000 0.00000000
B 010 O O O 0.00000000 0.00000000 0.00000000
c 001 O O O 0.00000000 0.00000000 0.00000000
ABOOO 1 0 0O 0.00000000 0.00000000 0.00000000
ACOO0OO O 1 0 0.00000000 0.00000000 0.00000000
BCOOO O O 1 0.00000000 0.00000000 0.00000000
AAOOO O O O 1.00000000 -0.07142857 -0.07142857
BBOOO O O 0 -0.07142857 1.00000000 -0.07142857
cCC0O0OO0 O O 0 -0.07142857 -0.07142857 1.00000000

Lumens.fit=1m(Lumens~Block+A+B+C+AB+AC+BC+AA+BB+CC)
summary (Lumens. fit)

Call:

Im(formula = Lumens ~ Block + A + B + C + AB + AC + BC + AA +
BB + CC)

Residuals:
Min 10 Median 30 Max

-604.97 -184.77 -27.95 240.71 673.23

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 5845.57 169.74 34.438 < 2e-16 ***x
Block2 275.20 138.60 1.986 0.061697 .
A 512.19 94.89 5.398 3.30e-05 ***
B 448.50 94.89 4.727 0.000147 ***
C 162.56 94.89 1.713 0.102951



AB -263.75 134.19 -1.965 0.064153

AC -65.13 134.19 -0.485 0.633009

BC -128.50 134.19 -0.958 0.350308

AR -749.15 139.67 -5.364 3.55e-05 **x*

BB 294.98 139.67 2.112 0.048163 *

cc -402.15 139.67 -2.879 0.009608 **
Signif. codes: 0 “***' 0.001 “**' 0.01 “*' 0.05 ".' 0.1

Residual standard error: 379.6 on 19 degrees of freedom
Multiple R-Squared: 0.8476, Adjusted R-squared: 0.7673
F-statistic: 10.56 on 10 and 19 DF, p-value: 8.155e-06
anova (Lumens.fit)

Analysis of Variance Table

Response: Lumens

Df Sum Sg Mean Sq F value Pr (>F)
Block 1 568013 568013 3.9428 0.0616966 .
A 1 4197377 4197377 29.1354 3.296e-05 ***
B 1 3218436 3218436 22.3403 0.0001469 **x*
C 1 422825 422825 2.9350 0.1029507
AB 1 556513 556513 3.8629 0.0641532
AC 1 33930 33930 0.2355 0.6330091
BC 1 132098 132098 0.9169 0.3503075
AA 1 4105241 4105241 28.4959 3.757e-05 ***
BB 1 789060 789060 5.4771 0.0303311 *
cc 1 1194249 1194249 8.2897 0.0096079 **
Residuals 19 2737225 144064
Signif. codes: 0 “***' (0,001 “**' 0.01 "*' 0.05 *.'" 0.1

coeff=coefficients (Lumens.fit) [2:11]
ggnorm(coeff) ;ggline (coeff)

Normal G-G Plot

T T T T T T T
1.5 -1.0 s oo os 1.0 15

Trewe lod Quanlies

par (mfrow=c(2,2))
plot (Lumens.fit)
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resid=residuals (Lumens.fit)
par (mfrow=c (1, 3)
plot (resid~A) ;plot (resid~B) ;plot (resid~C)
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# Appendices: Statistical Tables
FHAHH A A A R R R R R R R

### Appendix A.2 (p. 478) Normal distribution.
pnorm(-1.96) #cdf: P(-inf < z < -1.96) = 0.02499790

[1] 0.02499790
gnorm(0.025) #inverse cdf: P(-inf < z < -1.959964) = 0.025
[1] -1.959964

### Appendix A.3 (p. 480) Student's t distribution.
pt(-2.5,23) #cdf: P(-inf < t < =-2.5;df = 23) = 0.01



[1] 0.009997061

gt (0.025,12) #inverse cdf: P(-inf < t < -2.179;df = 12) = 0.025
[1] -2.178813

### Appendix A.4 (p. 481) Chi-square distribution.

pchisqg(8.0,4) #cdf: P(0 < X2 < 8.0;df=4) = 0.9084

[1] 0.9084218

gchisqg(0.975,10) #inverse cdf: P(0 < X2 < 20.48;df = 10) = 0.975

[1] 20.48318

### Appendix A.5 (p. 482) F distribution.

pf(4.0,4,15) #cdf: P(O0O < F < 4.0;dfnum=4,dfdenom=15) = 0.9790
[1] 0.978958

gf (0.95,4,15) #inverse cdf: P(0 < F < 3.056) = 0.95

[1] 3.055568

### Appendix A.6 (p. 484) Duncan's multiple range test.
### Not available?

### Appendix A.7 (p. 485) Studentized range distribution.

ptukey(4.020,4,17) #Inverse cdf: P(0 < Q < 4.020;k=4,df=17) = 0.95
[1] 0.950001

gtukey (0.95,4,17) #SRD cdf: P(0 < Q < 4.020;k=4,df=17) = 0.95

[1] 4.019985

### Appendix A.9 (p. 487) Fisher's Z transform.

FisherszZ=function(r) log((l+r)/(l-r))/2 #Returns Z for a given r

FishersZz (0.98) #Fisher’s Z: Z(r = 0.98) = 2.29756
[1] 2.29756

invFishersZ=function (thisZ) #Returns r for a given 7

{

r=-9999:9999

r=r/10000

Z=FishersZ(r)

thisr=approx(Z, r,xout=thisz)

thisrsy

}

invFishersZ(2.29756) #Inverse Fisher’s Z: r(z=2.29756) = 0.98

[1] 0.98



