
Sample Size Calculations

Paul Mathews
Mathews Malnar and Bailey, Inc.

466 West Jackson Street, OH 44077
Phone: 440-350-0911

Website: www.mmbstatistical.com
E-mail: paul@mmbstatistical.com

© 2005-2023 Mathews Malnar and Bailey, Inc.

1
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Getting to Know You
 Who are you?

 Name
 Title
 Company

 Do you perform sample size and power calculations for your
organization or are you just here for the CEUs?

 Are sample sizes set objectively in your organization or are they based
on arbitrary or historical choices?

 Do you use sample size or power software?
 Do you use published standards?

3



Seminar Outline
1. Review of Fundamental Concepts
2. Means
3. Standard Deviations
4. Proportions
5. Counts
6. Linear Regression
7. Correlation
8. Designed Experiments
9. Reliability
10. Statistical Quality Control
11. Resampling Methods

Mathews Malnar & Bailey, Inc., Sample Size Calculations 4



Motivation

0
0

Sample Size

R
es

ou
rc

es
 C

on
su

m
ed

Sampling Costs

Costs Associated with Incorrect Decisions

Total Costs
Size
Sample
Optimal

5



Definition
An experiment is any activity that involves data collection, analysis,
and interpretation for the purpose of making decisions about how to
manage a process.

If an experiment is worth doing, it should be done with the right
sample size.

"To call in the statistician after the experiment is done may be no
more than asking him to perform a post-mortem examination: he may
be able to say what the experiment died of." - Sir Ronald Fisher
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Point of View
 We take the point of view of a statistical consultant who is expected to

provide technical support for sample size and power calculations but
who has no experience with or knowledge of the process.

 The statistical consultant is dependent on the researcher for:
 Information about the process
 The limitations and goals of the experiment
 Executing the experiment
 Reporting deviations from the experiment plan
 Investigating unusual observations
 Recommending first principles to guide the analysis of the data
 Interpreting the results for practical significance
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Software
 Piface - www.stat.uiowa.edu/~rlenth/Power/
 PASS - www.ncss.com
 MINITAB - www.minitab.com
 R - www.r-project.org

 An important trick: Most sample size software does calculations for
hypothesis tests but not for confidence intervals. To do the sample size
calculation for a confidence interval set the power to 50% in the sample
size calculation for a hypothesis test.
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Approximate Methods
 Factors of two are only important in matters of salary (at least in

physics).
 Power and sample size calculations are done when there are significant

uncertainties in inputs to the calculations, so approximate calculation
methods may be tolerated.
 Ignore the continuity correction for discrete random variables
 Use large sample approximations with standard deviations

determined by the delta method
 Everything looks normal if the sample size is big enough

 Sources of uncertainties:
 Value of the standard deviation
 Value of the confidence interval half-width and confidence level
 Value of hypothesis test effect size and power
 Knowledge of the process
 Likelihood that the experiment will go as planned
 Validity of the analysis method
 Assumption violations
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Probability Distributions
 Normal
 Student’s t
 Chi-square 2
 F
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Normal Distribution

z
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Student’s t Distribution
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Chi-Square 2 Distribution
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F Distribution
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Delta Method
 Probability distributions often have undesirable properties such as

skewness or heteroscedasticity.
 For many of these distributions, a mathematical transformation of the

original random variable results in a distribution that is better behaved.
 Transforming a badly behaved distribution into a better behaved one

allows simpler and better known analysis methods to be used.
 The delta method is used to estimate the standard deviation of a

transformed distribution from the original distribution.
 It’s not necessary to understand how to apply the delta method;

however, it’s very helpful to make use of its results.
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Delta Method
Example: When the distribution of sample counts x is Poisson with
mean x   and standard deviation x   , the sampling
distribution of x is approximately normal with mean

 x  

and standard deviation

 x  x
d
dx

 x 
x

  1
2 

 1
2

.
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Delta Method
Example: An approximate 95% confidence interval for  is

P x  z0.025 x    x  z0.025 x  0.95

P x  1    x  1  0.95

P  x  12     x  12  0.95
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Delta Method
Example: Determine the 95% confidence interval for the Poisson
mean if x  25 counts are observed.

Solution: By the delta method:

P 25  1
2
   25  1

2
 0.95

P16    36  0.95

The exact confidence interval is:

P16.2    36.9  0.95

605550454035302520151050 605550454035302520151050

36.916.2 36.916.2

0.025 0.025
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Sample Size Calculations
To calculate the sample size, we must know the:
 Purpose of the experiment
 Type of data to be collected
 Parameter to be studied
 Experiment design
 Intended statistical analysis and decision criteria

 Confidence interval half-width, confidence level
 Effect size and power, significance level

 Population standard deviation
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Sample Size Myths
 There are many sample size myths that are not true
 Assuming variable data, it’s common to see statements like "It is

generally accepted that the sample size n  30 is sufficient."
 This statement is false ...
 Because the sample size must be matched to an intended analysis

method ...
 So there are different sample sizes required for studying the mean,

standard deviation, proportion defective relative to a specification
limit, process capability, and distribution shape.
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Seminar Outline
1. Review of Fundamental Concepts
2. Means

a. One Mean
b. Two Means
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5. Counts
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9. Reliability
10. Statistical Quality Control
11. Resampling Methods
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Confidence Interval for the Mean
The Central Limit Theorem says that the distribution of sample
means x  is normal with mean x  x and standard deviation
x  x/ n . This result can be used to construct probability
statements about the range of x values such as

x    x  x    1  
where the interval half-width  is

  z/2x

 xx


x
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Confidence Interval for the Mean
If we solve for x we obtain the confidence interval for the unknown
population mean:

x    x  x    1  .

LCL x UCL


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Confidence Interval for the Mean
 For a specified value of the confidence interval half-width  (the

precision of the estimate) and given (known) x and  related by:

  z/2x

 z/2x/ n

we can solve for the sample size:

n 
z/2x



2
.

 When the population standard deviation is unknown and must be
estimated from the sample data the normal z distribution must be
replaced with Student’s t distribution:

n 
t/2x



2

.

Because t/2 depends on n through its degrees of freedom value this
equation must be solved by iteration.
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Confidence Interval for the Mean
Example: Determine the sample size necesary to estimate, with 95%
confidence, the mean of a population with precision   10 when
x  20.

Solution: If we knew x then:

n  z0.025x



2
 1.96  20

10

2
 16.

With n  16,   15, and t0.025  2.13 so

n  t0.025x



2

 2.13  20
10

2
 19.

Eventually, with n  18,   17, and t0.025  2.11:

n  t0.025x



2

 2.11  20
10

2
 18.
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Confidence Interval for the Mean
Solution by Piface with CI for one mean:
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Confidence Interval for the Mean
Solution by MINITAB with Stat Power and Sample Size
1-Sample t:
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Confidence Interval for the Mean
Solution by MINITAB with Stat Power and Sample Size Sample
Size for Estimation Mean (Normal):
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Confidence Interval for the Mean
 To calculate the sample size we need ,x, and .
 Use   0.05 or whatever value is appropriate.
 Sources for the x estimate:

 Historical data
 Preliminary study
 Data from a similar process
 Expert opinion
 Published results (beware of publication bias)
 Guess

 Confidence interval half-width :
 Must be chosen by the researcher
 Must be sufficiently narrow to indicate a unique management

action
 Start from outrageous high and low values, work to the middle
 Be careful of relative confidence interval half-width
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Specifying the Confidence Interval Half-width
 In measurement units:

x    x  x    1  
(Note: This is the only method supported in most sample size
calculation software. The other methods express  in relative terms and
are not supported in software.)

 Relative to the mean:

x1    x  x1    1  
 Relative to the standard deviation:

x  s  x  x  s  1  
 Jacob Cohen, Statistical Power Analysis for the Behavioral

Sciences.
 This method is bad practice! See Russ Lenth’s discussion.

Mathews Malnar & Bailey, Inc., Sample Size Calculations 30



Sensitivity of the Confidence Interval
If the standard deviation is unknown the sample size is

n 
t/2x



2

 Student’s t distribution approaches the normal z distribution very
quickly so the approximation of t/2 with z/2 has little effect on the
sample size unless the sample size is very small.

 Compared to other factors, the magnitude of t/2 or z/2 changes slowly
with  so the value of  has little effect on the sample size.

 Sample size is proportional to the square of the standard deviation, i.e.
n  x

2
, so changes to the estimated value of x will have a big effect

on sample size. For example, doubling the value of the standard
deviation estimate will quadruple the sample size.

 Sample size is inversely proportional to the square of the confidence
interval half-width, i.e. n  1

2
, so changes to the estimated value of 

will have a big effect on sample size.
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Sensitivity of the Confidence Interval
 Recommendations:

 Don’t worry too much about the value of  (just use   0.05).
 Don’t worry too much about the approximation t/2  z/2.
 Be very careful determining the standard deviation.
 Be very careful choosing a value for the confidence interval

half-width.
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Confidence Interval for the Mean
Exercise: How many observations are required to determine the
number of flexing cycles required to break paper clips?

 What’s easy to determine?
 What’s hard to determine?
 What are the consequences of variation in those choices?
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Hypothesis Tests
 Hypothesis tests are used to test and compare population parameters

and distribution shapes of one, two, and many populations.
 Hypothesis tests involve two complementary hypotheses: the null

hypothesis H0 and the alternate hypothesis HA.
 State what’s to be demonstrated in HA and its complement is H0.
 "The extraordinary claim requires extraordinary evidence." - Carl

Sagan. The extraordinary claim is HA and its complement, the status
quo, is H0.

 Reject H0 in favor of HA when the sample data are statistically unlikely
to occur under H0.

 There is no opportunity to accept H0.
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Errors in Hypothesis Testing

UCL

CL

LCL

Time

Correct decision

Type 1 error

Correct decision

Type 2 error

H0 is true H0 is false

35



Test for the Mean ( Known)
 The hypotheses to be tested are:

H0 :   0 versus HA :   0.

 The test statistic is:

z 
x  0

x/ n
.

 The acceptance interval for H0 is:

z/2  z  z/2   1  .

-z z0

x
z

Accept H

a

 

0

0

 
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Test for the Mean
 The effect size  is:

  1  0  z/2  z 
x

n

 The power of the test is:

  z  z   where z  
x/ n

 z/2

¹¹

-z z0

x
z

Accept H

a

Accept H

0 1
-z 0

x
z

b

 

0

0



0



 


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Test for the Mean
 The quantity:

  z/2  z

 
x/ n

is called the noncentrality parameter.
 The sample size is:

n  z/2  z 
x



2

 The values of  and  have little effect on the sample size so, as with
confidence intervals, focus your attention on determining appropriate
values for x and .
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Test for the Mean
Example: An experiment will be performed to test H0 :   60 versus
HA :   60. The standard deviation is known to be x  5. What
sample size is required to reject H0 with   0.90 when   63?
Assume that the distribution of x is normal and use   0.05.

Solution: The effect size is   63  60  3 with associated power
  0.90 or type 2 error rate   0.10. Then the sample size must be:

n 
z0.025  z0.10x



2


1.96  1.2825

3

2

 30
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Test for the Mean
Solution by MINITAB with Stat Power and Sample Size
1-Sample Z:
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Test for the Mean
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Test for the Mean (x Unknown)
 The hypotheses to be tested are:

H0 :   0 versus HA :   0.

 If x is unknown, the test statistic is:

t 
x  0

s/ n
.

 The acceptance interval for H0 is:

t/2,  t  t/2,  1   where   n  1.
 The distribution of t under H0 is the well known central Student’s t

distribution but the distribution of t under HA is the less well known
noncentral Student’s t distribution.
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Test for the Mean (x Unknown)
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Test for the Mean (x Unknown)
 The exact power is given by:

t/2  t, where   
x/ n

.

 Find the sample size for a target power value by iterating over the
sample size until the power requirement is satisfied.

 When the sample size is large, t  z and the normal distribution power
and sample size methods are good approximations.

 Use t  z as a starting point for manual iterations to find a sample size.
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Test for the Mean (x Unknown)
Example: For the one-sample test of H0 :   30 versus HA :   30,
what sample size is required to detect a shift to   32 with 90%
power? The population standard deviation is unknown but expected
to be   1.5.
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Test for the Mean (x Unknown)
Solution: Assuming that t  z:

n 
z0.025  z0.10x



2


1.96  1.2821.5

2

2

 6

Try again:

n 
t0.025,5  t0.10,5x



2


2.57  1.481.5

2

2

 9.2

Further iterations indicate that n  9.
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Test for the Mean (x Unknown)
Solution (continued): The exact power with n  9 is given by the
solution to:

t/2  t, where   
x/ n

.

So

  2
1.5/ 9

 4.0

and

t0.025  2.306  t,4.0
which gives

  1    0.9366

(Hint: In MINITAB use the Calc Probability Distributions t menu
to perform the calculations.)
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Test for the Mean (x Unknown)
Solution by Piface with One-sample t test (or paired t):
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Test for the Mean (x Unknown)
Solution by MINITAB with Stat Power and Sample Size
1-Sample t:
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Test for Two Means
There are too many variations on tests for two means to discuss all
of them here. The conditions that affect which test to use are:
 Known or unknown standard deviations
 Equal or unequal standard deviations
 Equal or unequal sample sizes
 One sample size fixed
 Significance test or equivalence test
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Test for Two Means
In the test of H0 : 1  2 versus HA : 1  2 when the standard
deviations are known and equal (i.e., 1  2  ), the test statistic
is:

z  x 1  x 2


1
n1 

1
n2

.

When n1  n2  n, the power is given by

  P  z  z 

where

z  n
2





 z/2.

The approximate sample size to obtain a specified power value is

n1  n2  2z/2  z 
2 



2

.
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Test for Two Means
In the test of H0 : 1  2 versus HA : 1  2 when the treatments
are homoscedastic (i.e., 1  2  ) but the standard deviations
are unknown the test statistic is:

t  x 1  x 2
s 1

n1 
1
n2

where s is the standard error. When n1  n2  n, the power is given
by

  P  t  t 

where

t  n
2





 t/2.

The approximate sample size to obtain a specified power value is

n1  n2  2t/2  t 
2 



2

.
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Test for Two Means
Example: An experiment will be performed to test H0 : 1  2

versus HA : 1  2. The standard deviations are homoscedastic
and known to be x  50. What sample size is required to reject H0

with   0.90 when the difference between the means is   80?
Assume that the distributions are normal and use   0.05.

Solution: Starting from t  z:

n  2z0.025  z0.102




2

 21.96  1.2822 50
80

2

 9

Another iteration using t gives n  10.
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Test for Two Means
Solution by Piface with Two-sample t test:
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Test for Two Means
Solution by MINITAB Stat Power and Sample Size 2-Sample t:
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Multiple Comparisons Tests
 If simultaneous confidence intervals or tests are required, use a multiple

comparisons method to control the type I error rate for the family of
tests. For example:
 Bonferroni-corrected two-sample t tests
 Tukey’s HSD test for all possible comparisons.
 Dunnett’s test for comparisons between treatments and a control.
 Hsu’s test for comparisons to the best (highest or lowest).
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Multiple Comparisons Tests
 Apply Bonferroni’s correction to the type 1 error rate and use the

relevant two-sample test to approximate power and sample size for
multiple comparisons tests as long as the number of comparisons isn’t
too large. In general, if there are K simultaneous confidence intervals or
tests planned then  for the individual confidence intervals or tests
should be:

 
 family

K
.

 Bonferroni’s method is conservative,i.e. insensitive to small but
possibly important differences between the treatment means, so the
sample size calculated using the Bonferroni correction will be slightly
larger than the exact sample size calculated for other analysis methods
such as Tukey’s and Dunnett’s. The difference between the
approximate and exact sample sizes is usually small compared to the
effects on sample size caused by uncertainties in the values of the
standard error and the effect size.
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Multiple Comparisons Tests
 When the number of multiple comparisons becomes very large

Bonferroni’s method becomes very conservative. A less conservative
method of correcting  for individual tests is Sidak’s or Dunn’s
method:

  1  1   family 
1
K

where K is the number of tests required.
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Multiple Comparisons Tests
Bonferroni’s method applied to all possible pairwise comparisons
among k treatments leads to

K  k
2


kk  1

2
and

n i  2z/2  z 
2 



2

where

 
 family

K
.

Note: The sample size given by this method is very close to the exact
sample size calculated for ANOVA.
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Multiple Comparisons Tests
Example: For five treatment groups, determine the sample size
required per treatment to detect a difference   200 between two
treatment means using Bonferroni-corrected two-sample t tests for all
possible pairs of treatments with 90% power. Assume that the five
populations are normal and homoscedastic with   100.
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Multiple Comparisons Tests
Solution: With k  5 treatments there will be K  5

2   10
two-sample t tests to perform. To restrict the family error rate to
 family  0.05, the Bonferroni-corrected error rate for individual tests is

  0.05
10

 0.005.

With t  z, the sample size per treatment group is

n i  2
z0.0025  z0.10



2

 2
2.81  1.282100

200

2

 9.

Further iterations using t instead of z converge to n  12.
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Multiple Comparisons Tests
Solution by Piface:
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Multiple Comparisons Tests
Solution by Piface:
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Multiple Comparisons Tests
In an experiment to compare K treatment groups to a single control
group (that is, comparisons between treatments are not of interest),
the control group’s importance in the analysis suggests that it
deserves to have a larger sample size than the treatment groups.
The near-optimal allocation of observations to treatment and control
groups is

n0  n i K

where n0 is the number of observations in the control group and n i is
the number observations in each of the treatment groups. The
sample size for the treatment groups is given by:

n i  1  1
K

z/2  z 
2 



2

where the Bonferroni-corrected type 1 error rate is

 
 family

K
.
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Multiple Comparisons Tests
Example: Determine the sample size required to test five treatment
groups against a control group if the tests must detect a difference
  200 between a treatment mean and the control group mean.
Assume near-optimal allocation of samples to the treatments and the
control and 90% power. Assume that all of the populations are
normal and homoscedastic with   100.
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Multiple Comparisons Tests
Solution: With five treatment groups and one control group there will
be K  5 two-sample t tests. To restrict the family error rate to
 family  0.05 the Bonferroni-corrected error rate for individual tests is

  0.05
5

 0.01.

With t  z, the sample size for the treatment groups will be

n i  1  1
K

z0.005  z0.10



2

 1  1
5

2.575  1.282100
200

2

 6

and the sample size for the control group will be

n0  n i K  6 5  14.

The number of error degrees of freedom will be
df  56  1  14  1  38 so the assumption that t  z is justified.
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Seminar Outline
1. Review of Fundamental Concepts
2. Means
3. Standard Deviations

a. One Standard Deviation
b. Pilot Studies
c. Two Standard Deviations

4. Proportions
5. Counts
6. Linear Regression
7. Correlation
8. Designed Experiments
9. Reliability
10. Statistical Quality Control
11. Resampling Methods
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Standard Deviations
 Sample size and power calculations for standard deviations are based

on the chi-square 2 distribution.
 The accuracy of the 2 distribution is VERY sensitive to deviations

from normality so be very careful to check the normality assumption.
 The 2 distribution can be difficult to work with but it can be

approximated by the normal distribution when the sample size is
sufficiently large.

 Follow up an approximate sample size calculation with an exact
calculation if the approximate method delivers a small sample size.
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Confidence Interval for 
 If the population being sampled is normal, the distribution of

n  1s2/2 is 2 with   n  1 degrees of freedom, so:

P /2
2 

n  1s2

2  1/2
2  1  .

 The exact confidence interval for  is:

P s n  1
1/2
2    s n  1

/2
2  1  .
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Confidence Interval for 
 When the sample size is very large, the 2 distribution is approximately

normal with 2   and 2  2 .
 Then an approximate large sample confidence interval is:

P   z/2 2  2    z/2 2  1  

  1  

Ps1      s1    1  
where

 
z/2
2n

.

 The sample size required to obtain a specified relative confidence
interval half-width is

n  1
2

z/2


2
.
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Confidence Interval for 
Example: What sample size is required to estimate  with 10%
precision and 95% confidence?

Solution: The desired confidence interval has the form

Ps1  0.10    s1  0.10  0.95.

With   0.05 and   0.10, the sample size required to obtain a
confidence interval of the desired half-width is

n  1
2

1.96
0.10

2
 193.
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Confidence Interval for 
Solution by MINITAB using Stat Power and Sample Size Sample
Size for Estimation Standard Deviation (Normal):
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Pilot Studies
 What sample size is required for a pilot study to obtain a sufficiently

accurate estimate of the standard deviation to use in the sample size
calculation for a primary experiment?

 If  is the maximum allowable relative error in the sample size of the
primary experiment with associated confidence level 1  , that is,

Pn1    n  n1    1  ,
then the sample size of the pilot study must be:

n  2
z/2


2
.
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Pilot Studies
Example: The sample size required in a preliminary experiment to
determine x sufficiently well so that the sample size in a primary
experiment is within 10% of the correct value with 95% confidence is:

n  2 1.96
0.1

2

 769

Using Piface Pilot study:
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Test for 2

 The hypotheses to be tested are:

H0 : 2  0
2 versus HA : 2  0

2.

 The test statistic is:

2 
n  1s2

0
2

where the 2 distribution has   n  1 degrees of freedom.
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Test for 2

 At the critical value of the sample variance sA/R
2 :

sA/R
2 

1
2 0

2

n  1 

21

2

n  1

0  s 




0
2

A/R
2

1
2 s2

Accept H0 Reject H0

H  :0 0
22

H  :A 2
1
2

0

0

 (H  )2
0

2 (H  )A

df

df








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Test for 2

 The power is:

  P
2  2  

where


2  1

2 0
1

2
.

 The exact sample size is determined by the condition:
1
2


2  1

0

2
.

df 0.95
2 /0.10

2 0.90
2 /0.05

2 df 0.95
2 /0.10

2 0.90
2 /0.05

2

2 28.43 44.89 50 1.791 1.817

4 8.920 10.95 100 1.510 1.521

10 3.763 4.057 200 1.400 1.407

20 2.524 2.618 500 1.203 1.204
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Test for 2

 When the sample size is large, the distribution of lns is approximately
normal with  lns  ln and  lns  1/ 2n .

 The power by the large sample approximation is:

  z  z  
where

z  2n ln 1
0

 z.

 The approximate sample size required to obtain power   1   is:

n  1
2

z  z
ln 1

0


2

.
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Test for 2

Example: What sample size is required to reject H0 : 2  40 in
favor of HA : 2  40 with   0.90 when 2  100?

Solution: With z0.05  1.645 and z0.10  1.282:

n  1
2

1.645  1.282
ln 100

40

2

 21.

The solution by the exact method gives n  22.
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Test for Two Standard Deviations
 The hypotheses to be tested are H0 : 1

2  2
2 versus HA : 1

2  2
2.

 The test statistic is

F  s1
s2

2
.

 The exact power is given by:

  PF  F   where F 
2
1

2
F1.

0 1 F

F0

 F = (s /s )1 2
2



 1 2
2 F = (s /s )1 2

2

0 F 12
2 1 F = (s /s ) 1 2

2
2 1

2

 

Accept H0 0

H0

HA

Reject H
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Test for Two Standard Deviations
 The distribution of lns1/s2 is approximately normal.
 The large-sample approximate power is:

  z  z  
where

z 
ln 1

2 

1
2 

1
n1 

1
n2 

 z.

 When n1  n2, the approximate sample size is:

n1  n2 
z  z
ln 1

2 

2

.
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Test for Two Standard Deviations
Example: What sample size is required to reject H0 :   10 in favor
of HA :   10 with   0.90 when   20?

Solution: With 1/0  20/10  2, z0.05  1.645, and z0.10  1.282:

n1  n2 
z  z
ln 1

2 

2

n1  n2 
z0.05  z0.10

ln2

2

 18

MINITAB’s Stat Power and Sample Size 2 Variances menu
gives n  20.
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Seminar Outline
1. Review of Fundamental Concepts
2. Means
3. Standard Deviations
4. Proportions
5. Counts
6. Linear Regression
7. Correlation
8. Designed Experiments
9. Reliability
10. Statistical Quality Control
11. Resampling Methods
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Proportions
 One Proportion

 Exact (binomial) method
 2 approximation
 Normal approximations
 Larson’s nomogram

 Two Proportions
 Difference
 Risk ratio or relative risk
 Odds ratio
 Fisher’s exact test
 McNemar’s test for correlated proportions
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Proportions
 The distribution of successes x in trials n, when the probability of a

success in any trial p is fixed, follows the binomial model:

bx;n,p  n
x px1  pnx

 Exact confidence intervals and hypothesis test are performed with the
binomial model but there are many approximations available.

 If a large-sample approximation gives a sample size that’s large
compared to the population size, use the small-population correction

n   n
1  n1

N

where n is the sample size obtained by the large-sample method and n 

is the corrected sample size.
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Confidence Interval for One Proportion
 When p is small, the approximate sample size required to demonstrate

the one-sided upper confidence limit for the population proportion with
the form:

P0  p  pU  1  
is given by:

n 
1,2X1
2

2pU
where X is the number of successes in the sample.

 For the special case of P0  p  pU  0.95, without any successes
found in the sample, the approximate sample size is given by the rule of
three:

n 
0.95,2
2

2pU

 3
pU .
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Confidence Interval for One Proportion
Example: How many units must be inspected without any failures to
be 95% confident that the defective rate is less than 1%?

Solution: The desired confidence interval has the form:

P0  p  0.01  0.95.

By the rule of three, the sample size must be:

n  3
0.01

 300.
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Confidence Interval for One Proportion
 When the sample size is large and 0.1  p  0.9, the confidence

interval for p is approximately:

Pp    p  p    1  
where

  z/2
p1  p

n

which leads to

n  p1  p z/2


2
.

 When p  1
2 and   0.05:

n  1
4

z0.025


2

 2.
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Confidence Interval for One Proportion
Example: How many people must be polled in a close election to
estimate how the election will go with 2% precision and 95%
confidence?

Solution: The desired confidence interval has the form:

Pp  0.02  p  p  0.02  0.95.

The sample size must be:

n  0.022  2500.

Solution using Piface CI for one proportion:
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Confidence Interval for One Proportion
Solution using MINITAB Stat Power and Sample Size 1
Proportion:
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Confidence Interval for One Proportion
Solution using MINITAB Stat Power and Sample Size Sample
Size for Estimation Proportion (Binomial):
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Proportions In Small Populations
 When the population is small, attention shifts from the success rate to

the number of successes.
 The hypergeometric distribution governs attribute sampling from small

populations, but there are good approximations to it in most cases.
 The small-sample n  N binomial approximation:

hx;S,N,n  bx;n,p  S/N

 n
x  S

N
x
1  S

N
nx

.

 The rare-event S  N binomial approximation:

hx;S,N,n  bx;S,p  n/N

 S
x

n
N

x
1  n

N
Sx

.
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Confidence Interval for One Proportion
(Small Population)
 The one-sided upper 1  100% confidence interval for S is given by

PS  SU  1  
where SU is the smallest value of S which satisfies


x0

X

hx;SU,N,n  .
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Confidence Interval for One Proportion
(Small Population)
 When X  0 and n  N:

h0;SU,N,n  b 0;n,p  SU
N

 1  SU
N

n

which leads to:

n  ln

ln 1  SU
N

.

This result is equivalent to:

n 
1,2
2

2 SU
N

.
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Confidence Interval for One Proportion
(Small Population)
 When X  0 and S  N:

h0;SU,N,n  b 0;SU,p  n
N

 1  n
N

SU

which leads to:

n  N1  1/SU 

or
n
N

 1  1/SU .
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Confidence Interval for One Proportion
(Small Population)
Example: What fraction of a lot must be inspected and found to be
free of defectives to demonstrate,with 95% confidence, that there are
no more than four defectives in the population?
Solution: The goal of the experiment is to demonstrate the
confidence interval

P0  S  4  0.95

using a zero-successes X  0 sampling plan. By the rare-event
approximation,

n
N

 1  1/SU

 1  0.051/4

 0.53.
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Test for One Proportion
 The hypotheses to be tested are H0 : p  p0 versus HA : p  p0.
 The exact power and sample size are determined by the simultaneous

solution to


x0

c

bx;n,p0  1  


x0

c

bx;n,p1  .

where c is the acceptance number.
 Use a large-sample approximation to find an approximate solution, then

iterate the equations to find an exact solution.
 Larson’s nomogram is the easiest way to find an approximate solution.
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Test for One Proportion
Example: Find n and c for the sampling plan for defectives that will
accept 95% of lots with 2% defectives and 5% of lots with 9%
defectives. Draw the OC curve for the sampling plan.

Solution:
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Test for One Proportion
Solution (continued):
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Test for One Proportion
Solution by MINITAB Stat Quality Tools Acceptance Sampling
by Attributes Create a Sampling Plan:

Mathews Malnar & Bailey, Inc., Sample Size Calculations 100



Confidence Interval for the Difference
Between Two Proportions
 The two-sided confidence interval for p has the form

Pp    p  p    1  
where the confidence interval half-width is

  z/2p .

 Then the sample size n1 required to obtain the desired confidence
interval half-width  with sample size ratio n1/n2 is

n1 
z/2


2
p11  p1  p21  p2 n1

n2 .

 If p1 and p2 are expected to be approximately equal so that they can
both be estimated by a nominal value p, then

n1 
z/2


2
1  n1

n2 p1  p.
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Test for a Difference Between Two Proportions
 The hypotheses to be tested are H0 : p1  p2 versus HA : p1  p2.
 The power of the test is

    z  z 

where

z 
p
2p1p

n

 z/2

and
p  1

2

p 1 

p 2.

 The sample size is

n 
2p1  p
p2

z/2  z 
2.
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Test for a Difference Between Two Proportions
Example: A biologist wants to test for a difference in the ratio of male
to female frogs between a clean pond and a contaminated pond.
How many frogs must she sample to detect a difference of 10%
between the ponds with 90% power?

Solution: Assuming that normal ratio of male to female frogs is 1 : 1,
with p  0.5 and p  0.10, the approximate sample size is:

n 
20.51  0.5

0.102
1.96  1.2822  526.
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Test for a Difference Between Two Proportions
Solution by Piface Test Comparing Two Proportions:
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Test for a Difference Between Two Proportions
Solution by MINITAB Stat Power and Sample Size 2
Proportions:
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Seminar Outline
1. Review of Fundamental Concepts
2. Means
3. Standard Deviations
4. Proportions
5. Counts

a. One population
b. Two populations
c. Many populations

6. Linear Regression
7. Correlation
8. Designed Experiments
9. Reliability
10. Statistical Quality Control
11. Resampling Methods

Mathews Malnar & Bailey, Inc., Sample Size Calculations 106



Poisson Counts
 The distribution of counts is Poisson:

Poissonx;n, 
nxen

x!
for x  0,1,

where x is the number of counts observed in area of opportunity n. The
mean of x is x  n, where  is the mean x per unit area.

 When the Poisson mean is large, the Poisson distribution is
approximately normal.

 The distribution of x is approximately normal with mean  x  n
and standard deviation  x  1

2 . This transformation provides
convenient methods for sample size and power calculations.
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Confidence Interval for the Poisson Mean
 An approximate large sample confidence interval for the Poisson mean

is

P
x  z/2 x

n   
x  z/2 x

n  1  

P

1     


1    1  

where

  x

n and   z/2/ x .

 The number of events x required to obtain a specified value of  is
given by

x 
z/2


2
.
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Confidence Interval for the Poisson Mean
Example: How much junk mail must be accumulated to estimate the
daily rate of junk mail with 10% precision and 95% confidence?

Solution: The desired confidence interval has the form

P

1  0.10   


1  0.10  0.95.

The total number of pieces of junk mail required is

x  z0.025
0.1

2

 1.96
0.1

2

 385.

After at least that many pieces of junk mail are collected,

  x

n
where n is the number of days, and the confidence limits for  are

UCL/LCL  1  0.1

.
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Confidence Interval for the Poisson Mean
Solution: By Piface, x  100  3.83  383:
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Confidence Interval for the Poisson Mean
Solution using MINITAB Stat Power and Sample Size Sample
Size for Estimation Mean Poisson:
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Test for One Poisson Mean
 The hypotheses to be tested are H0 :   0 versus HA :   0.
 The approximate power is

  z  z  
where

z  2 n 1  0  z.

 The number of units that must be inspected to reject H0 with specified
power is

n  1
4

z  z
1  0

2

.
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Test for One Poisson Mean
Example: How many sampling units must be inspected to reject
H0 :   10 with 90% power in favor of HA :   10 when   15?

Solution:

n  1
4

z0.05  z0.10
15  10

2

 1
4

1.645  1.282
15  10

2

 4.24
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Test for One Poisson Mean
Using Piface Generic Poisson Test the sample size must be n  5.
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Test for One Poisson Mean
Solution using MINITAB Stat Power and Sample Size 1-Sample
Poisson Rate:
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Test for Two Poisson Means
 The hypotheses to be tested are H0 : 1  2 versus HA : 1  2.
 The approximate power is

    z  z 

where

n1  1
4

1  n1
n2

z  z
2  1

2

and n1/n2 is the sample size allocation ratio.
 The optimum allocation ratio is

n1
n2  1

2
.
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Linear Regression
 The linear regression model is

y i  b0  b1x i   i

 The usual goal in linear regression is to estimate the slope, e.g.:

Pb1    1  b1    1  
where

  t/2b1

 t/2


SSx

and

SSx  
i1

n

x i  x 2

 The confidence interval half-width depends on the pattern of x values.
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Linear Regression
 If x is normal:

N  t/2

x

2

 k evenly spaced, equally weighted levels of x:

N  12
k  1k  1

t/2

x

2

where x  xmax  xmin
k  1

 If x is uniformly distributed between xmin and xmax:

N  12
t/2

xmax  xmin

2

 k  2 levels of x:

N  4
t/2

xmax  xmin

2
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Linear Regression
 Comparison of the total number of observations under different patterns

for the x observations to obtain the same estimation precision for the
slope:
 Three levels of x versus two levels of x:

N three levels of x

N two levels of x
 1.5

 Uniform distribution of x versus two levels of x:
Nuniform distribution of x

N two levels of x
 3

 Conclusions:
 Pick the range of x to be as wide as is practically possible.
 Concentrate observations at the x extremes
 If a lack of fit test is required, add observations at the center of the

x range.
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Test for the Regression Slope
 The hypotheses to be tested are H0 : 1  0 versus HA : 1  0,

where 1 is the regression slope parameter.
 The power to reject H0 is

  P  t  t 

where

t 
|1 | SSx


 t/2

and

SSx  Nx
2.

 The number of observations required to obtain a specified power value
for a given 1 value is the smallest value of N that satisfies

N  t/2  t 
2 

1x

2

.
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Test for the Regression Slope
Example: How many observations are required to reject H0 : 1  0
in favor of HA : 1  0 with 90% power for 1  10 when x  2 and
  30?

Solution: With t  z, the first iteration gives

N  z0.025  z0.102 30
10  2

2
 24.

Further iterations indicate that the required sample size is N  26.

Using Piface Linear Regression:
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Correlation
 Pearson’s correlation coefficient is , where   0 indicates no

correlation,   1 indicates perfect positive correlation, and   1
indicates perfect negative correlation.

 The distribution of Fisher’s Z transform given by

Z  tanh1r

 1
2
ln 1  r

1  r
is approximately normal with mean

Z  1
2
ln

1  
1  

and standard deviation

Z  1
n  3

.
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Confidence Interval for the Correlation Coefficient
 If numerical values are chosen for the upper and lower confidence

limits of ,

PLCL    UCL  1  ,
then the limits may be Z-transformed to obtain

PZLCL  Z  ZUCL   1  .

 The sample size to obtain the desired confidence interval is

n  4
z/2

ZUCL  ZLCL

2

 3.
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Confidence Interval for the Correlation Coefficient
Example: Determine the number of paired observations required to
obtain the following confidence interval for the population correlation:

P0.9    0.99  0.95.

Solution: The Fisher’s Z-transformed confidence interval is

PZ0.9  Z  Z0.99  0.95

P1.472  Z  2.647  0.95.

The required sample size is

n  4 1.96
2.647  1.472

2
 3

 15.
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One-way ANOVA
 The hypotheses to be tested are H0 :  i   j for all pairs of k

treatments versus HA :  i   j for at least one pair of treatments.
 The test is performed using the F statistic

F  nsx2

s2

where the F distribution has 1  k  1 and 2  kn  1 degrees of
freedom.

 The acceptance interval for H0 is

P0  F  F1  1  .
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One-way ANOVA
 The power to reject H0 is given by the condition

F1  F,

where the noncentrality parameter is

 
ESStreatments

EMS 


n
i1

k

 i
2


2 .

F(H )10 F

Accept H Reject H0 0

 0

H0

HA

0 F F(H )A



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One-way ANOVA
 If two treatments are biased symmetrically about the mean:

 i   
2
, 
2
,0, 0, ,

then

  n
2




2
.

 If one treatment is biased relative to the others:

 i   k  1
k

, 
k
, 
k
, ,

then

 
nk  1

k



2
.

 The first condition (two treatments biased symmetrically about the
mean) has a smaller noncentrality parameter, i.e. is harder to detect,
than the second condition (one treatment biased with respect to all of
the others) so the first condition is the one that’s usually assumed.
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ANOVA Power and Sample Size Calculations
 The condition

F1  F,

can be used to calculate the power for a specified sample size; however,
it cannot be solved explicitly for the sample size as a function of the
power. Sample sizes must be determined by iteration.

 An approximate sample size for ANOVA can be calculated by applying
Bonferroni’s correction to two-sample t tests. This sample size is
conservative but it provides a good starting point for iterations to
determine the exact sample size.
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One-way ANOVA Power
Example: In a one-way classification design with four treatments and
five observations per treatment, determine the power of the ANOVA
to reject H0 if the treatment biases from the grand mean are
 i  18,6,6,6. The four populations are expected to be normal
and homoscedastic with   8.
Solution: With   24 in the noncentrality parameter equation for
one treatment biased relative to the others

 
nk  1

k



2
 5  3

4
24
8

2
 33.75.

The F statistic will have dftreatments  4  1  3 and df  45  1  16
degrees of freedom. The power is 99.5% as determined from

F0.95  3.239  F0.005,33.75.
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One-way ANOVA
Solution: With sA  182  362 /4  1  12.0:
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One-way ANOVA
Example: Use MINITAB to determine the sample size required for a
one-way classification design with five treatments to be analyzed by
ANOVA. The experiment must resolve a difference of   200 with
90% power. The five populations are expected to be normal and
homoscedastic with   150. Confirm the value of the power for that
sample size.
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One-way ANOVA
Solution: From Stat Power and Sample Size One-Way ANOVA:
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One-way ANOVA
Solution: MINITAB indicates that the experiment requires n  19
observations per treatment group. The model degrees of freedom
will be dfmodel  5  1  4 and the error degrees of freedom will be
df  519  1  90. The noncentrality parameter (assuming two
treatments biased symmetrically about the mean) is

  n
2




2
 19

2
200
150

2
 16.89

Then we have:

F1  F,

F0.95  2.486  F,16.89

which is satisfied by   0.0877 so the power is   0.9123 or 91.2%.
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One-way ANOVA
Solution (continued): Using Calc Probability Distributions F:
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Balanced Full Factorial Design with Fixed Effects
Example: A 2  3  5 full factorial experiment with four replicates is
planned. The experiment will be blocked on replicates and the
ANOVA model will include main effects and two-factor interactions.
Determine the power to detect a difference   300 units between
two levels of the third study variable if the standard error of the model
is expected to be   500.
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Balanced Full Factorial Design with Fixed Effects
Solution: If the three study variables are given the names A, B, and
C and have a  2, b  3, and c  5 levels, respectively, then
dfblocks  3, dfA  1, dfB  2, dfC  4, dfAB  2, dfAC  4, dfBC  8, and
df  95. The F distribution noncentrality parameter for C with biases
1  150, 2  150, and 3  4  5  0 is

C 
abn

i1

5

 i
2


2


2  3  4  1502  1502  02  02  02

5002

 4.32.

The power is determined from

F0.95  2.469  F1C,4.32,

which is satisfied by C  0.328.
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Balanced Full Factorial Design with Fixed Effects
Solution: Using Piface Balanced ANOVA Three-way Design with
sC  21502  302 /5  1  106.1:
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Balanced Full Factorial Design with Fixed Effects
Solution: Using MINITAB Stat Power and Sample Size General
Full Factorial Design:
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Fixed Effects in Mixed Models
 For a fixed variable A, the hypotheses to be tested are H0 :  i   j for

all pairs of A levels versus HA :  i   j for at least one pair of A
levels.

 The test is performed with the F statistic

FA 
MSA
MSA

whereMSA is the mean square associated with the error for
estimating the A effect.

 The power is given by

F1  F,A

where

A  N
a


i1

a
 i
2

MSA
and N is the total number of observations.
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Random Effects in Mixed Models
 The hypotheses to be tested are H0 : R

2  0 versus HA : R
2  0.

 The F statistic is

FR 
MSR
MSR

whereMSR is the ANOVA mean square associated with R andMSR
is the mean square associated with the error term for testing the R
effect.

 Under HA : R
2  0, the distribution of

FR
  F1

FR

follows the central F distribution with dfR numerator and dfR
denominator degrees of freedom.
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Random Effects in Mixed Models
 For specified values of the variances required to estimateMSR and

MSR under HA, the expected value of FR is

EFR  E MSR
MSR

 EMSR
EMSR 

and the corresponding power to reject H0 is approximately

  P F1
EFR

 F   .

Mathews Malnar & Bailey, Inc., Sample Size Calculations 144



Fixed and Random Effects in Mixed Models
Example: A balanced full factorial experiment is to be performed
using a  3 levels of a fixed variable A, b  5 randomly selected
levels of a random variable B, and n  4 replicates.

a) Determine the power to reject H0 :  i  0 for all i when the A-level
biases are  i  20,20, 0 with B  25, AB  0, and   40.
Assume that the AB interaction term will be included in the ANOVA
even though its expected variance component is 0.

b) Determine the power to reject H0 : B
2  0 when B  25, AB  0,

and   40. Retain the AB interaction term in the model even though
its variance component is 0.
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Fixed and Random Effects in Mixed Models
Solution: a) The error mean square used for testing the A effect (that
is, the denominator of FA) is

MSA  MSAB

 
2
 nAB

2
.

The noncentrality parameter is

A  N
a


i1

a
 i
2

MSA

 3  5  4
3

202  202  02

402  402

 10.

With dfA  2 and dfAB  8,

F0.95  4.459  F1,10.0

which is satisfied by   0.640.
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Fixed and Random Effects in Mixed Models
Solution: b) The expected FB value is approximately

EFB 
EMSB
EMSAB

 
2  nAB

2  anB
2


2  nAB

2

 402  402  3  4  252

402  402

 5.69.

With dfB  4 and dfAB  8, the critical F value for the test for the B
effect is F0.95,4,8  3.838, so the power is approximately

  P 3.838
5.69

 F  

 P0.675  F  
 0.618.
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Fixed and Random Effects in Mixed Models
Solution: With sA  202  202  02 /3  1  20:
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Two-Level Factorial Designs
 There are two goals in two-level factorial designs:

 Detecting signficant effects (ANOVA)
 Quantifying a regression coefficient (regression)

 For the purpose of testing for significant effects, use the balanced full
factorial power calculation method. The total number of observations
required can be approximated from

n2k  4t/2  t 
2 



2
.

(Notice that the right hand side is almost constant!)
 For the purpose of estimating the regression coefficient associated with

a variable, use the linear regression slope method, which gives:

n  1
2k

t/2



2

.
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Two-Level Factorial Designs
Example: A two-level factorial experiment is limited to 32
experimental runs. Determine the power to detect an effect   

using designs with one to five variables and all of the available
resources. Assume that the model will include only main effects and
two-factor interactions.

Solution: The table below shows the exact power as a function of
the number of variables in the experiment.

k n n2k 

1 16 32 0.781

2 8 32 0.779

3 4 32 0.776

4 2 32 0.767

5 1 32 0.757

6 1
2 32 0.757
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Two-Level Factorial Designs
Solution: For the 23 design with

sA   1
2 

2
  1

2 
2

/2  1  0.707:
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Two-Level Factorial Designs
Solution: Using MINITAB Stat Power and Sample Size 2-Level
Factorial:
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Two-Level Factorial Designs
Example: How many replicates of a 23 design are required to
determine the regression coefficient for a main effect with precision
  300 with 95% confidence when the standard error of the model is
expected to be   600?
Solution: If the error degrees of freedom are sufficiently large that
t0.025  z0.025 then

n  1
23

1.96  600
300

2

 2.

With only 2  23  16 total runs, the t0.025  z0.025 assumption is not
satisfied. Another iteration shows that the transcendental sample
size condition is satisfied for n  3 replicates of the 23 design.
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Two-Level Factorial Designs
Solution: Using MINITAB Stat Power and Sample Size 2-level
Factorial Design (Note: MINITAB’s menu is expressed in terms of
the effect size which is two times the value of the regression
coefficient.):
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Binary Responses in 2k Designs
 The observation that the total number of runs is almost invariant with

respect to k in 2k designs with quantitative responses extends to binary
responses.

 For a 2k design with a binary response, calculate the total sample size
using the two proportions method and then distribute the observations
uniformly over all of the cells of the 2k design.
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Binary Responses in 2k Designs
Example: Determine the number of replicates required for a 23

design with a binary reponse if the experiment should reject
H0 : p  0.02 with 90% power when p  0.05.
Solution: Using MINITAB Stat Power and Sample Size 2
Proportions, the number of observations required is n  787 per
treatment group or 2  787  1574 in total. There are 23  8 cells in
the experiment, so the number of observations per cell should be
1574/8  197.
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Seminar Outline
1. Review of Fundamental Concepts
2. Means
3. Standard Deviations
4. Proportions
5. Counts
6. Linear Regression
7. Correlation
8. Designed Experiments
9. Reliability

a. Reliability Parameter Estimation
b. Reliability Demonstration Tests
c. Two-sample Reliability Tests
d. Interference

10. Statistical Quality Control
11. Resampling Methods
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How are Reliability/Survival Statistical Methods
Different from Classical Statistical Methods?
 Responses are often, but aren’t limited to, time or number of cycles to

failure
 Some additional distributions: exponential, Weibull, ...
 Censored observations:

 Right censored - the experiment is suspended before a unit fails
 Left censored - a unit fails before the first time it is observed
 Interval censored - a unit fails between two observation times

 Analysis methods: Special methods are required for
 Non-normal error distributions
 Censored observations
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How are Reliability/Survival Statistical Methods
Similar to Classical Statistical Methods?
 Reliability/Survival methods also involve point estimates, confidence

intervals, and hypothesis tests
 Reliability/Survival methods also involve issues of distribution

location, variation, and shape
 Reliability/Survival experiments are also available for one sample,

paired samples, two samples, and many samples
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Sample Sizes for Reliability
 The estimation precision for reliability parameters is determined

by the number of failures, not by the number of units tested.
 In the methods that follow:

 The symbol n indicates the number of units tested
 The symbol r indicates the number failures
 Easy to use normal approximations will be used instead of the

more accurate but more complicated methods
 Sample size calculations for reliability problems can be performed for:

 Parameters, e.g. , exponential mean , Weibull shape  or scale ,
...

 Percentiles, e.g. the time at which a specified fraction (percent) of
the population fails, e.g. B1, B10, LD50, ...

 Percent/failure fraction/reliability at a specified time
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Confidence Interval for the Exponential MTTF
Under the exponential reliability model the reliability at time t is

Rt;  et/

where  is the mean time to failure (MTTF). A point estimate for  is

t  1
r 

i1

n

t i.

When r is large an approximate confidence interval for  is given by

Pt1      t1    1  
where the confidence interval relative half-width is

 
z/2
r

.

Then the approximate number of failures required to obtain a
specified CI half-width is

r 
z/2


2
.
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Confidence Interval for the Exponential MTTF
Example: How many units must be tested to failure to determine the
exponential mean life  with 20% precision and 95% confidence?
Solution: The goal of the experiment is to determine a confidence
interval for  of the form

Pt1      t1    1  
With   0.05 and   0.2, the required number of failures is

r  1.96
0.20

2

 97.
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Confidence Interval for the Exponential MTTF
Solution: Using MINITAB Stat Reliability/Survival Test Plans
Estimation:
 Specify the exponential distribution
 MINITAB is referenced by failure, not survival, rates, so
 The desired percentile is  with corresponding percent

1  et/ | t  1  e1  0.632.

 Specify the confidence interval half-width.
 Average the sample sizes for the lower and upper bounds solutions.
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Confidence Interval for an Exponential Percentile
The sample size calculation for the confidence interval for the
exponential mean also applies to all other percentiles.

Example: How many units must be tested to failure to determine,
with 20% precision and 95% confidence, any failure percentile under
the assumption that the reliability distribution is exponential?
Solution: The goal of the experiment is to determine a 95%
confidence interval for the 100f th failure percentile t f of the form

P

t f1    t f 


t f1    0.95

where

tf  t ln1  f.
With   0.05 and   0.2, the required number of failures is

r  1.96
0.20

2

 97.
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Confidence Interval for an Exponential Reliability
An approximate large-sample 1  100% confidence interval for the
exponential reliability Rt; is

P R1    R  R1    1  

where the confidence interval’s relative half-width is

  
z/2 ln R

r
.

Then the number of failures r required to obtain a specified
confidence interval half-width is

r 
z/2 ln R



2

.
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Confidence Interval for an Exponential Reliability
Example: How many units must be tested to failure in an experiment
to determine, with 95% confidence, the exponential reliability to
within 10% of its true value if the expected reliability is 80%?

Solution: With   0.05,   0.10, and R  0.80, the required
number of failures is

r 
z/2 ln R



2


1.96 ln0.80

0.10

2

 20.
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Confidence Interval for the Weibull Scale Parameter
The Weibull reliability at time t is given by

Rt;,  et/


where  is the scale factor and  is the shape factor. When  is
known but  is not, which is often the case, then after the variable
transformations t   t and     the Weibull distribution is
transformed into the exponential distribution and the results from that
method apply. This leads to the the approximate confidence interval
for the scale parameter

P1      1    1  
where the confidence interval’s relative half-width is

 
z/2
 r

.

Then the number of failures required to obtain specified relative
precision  is

r 
z/2


2

.
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Confidence Interval for the Weibull Scale Parameter
Example: How many units must be tested to failure to estimate, with
20% precision and 95% confidence, the Weibull scale factor if the
shape factor is known to be   2?
Solution: The goal of the experiment is to obtain a confidence
interval for the Weibull scale factor with   0.20 and   0.05. The
required number of failures is

r 
z/2


2

 1.96
2  0.20

2

 25.
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Confidence Interval for the Weibull Shape Parameter
A 1  100% confidence interval for the Weibull shape parameter 
is required of the form

P

1     


1    1  

where  is the relative precision of the  estimate given by

 
z/2


6
r .

Then the number of failures required to obtain a specified relative
precision for the  estimate is

r  6
z/2


2
.
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Confidence Interval for the Weibull Shape Parameter
Example: How many units must be tested to failure to estimate, with
95% confidence, the Weibull shape parameter to within 20% of its
true value?
Solution: The goal of the experiment is to produce a 95%
confidence interval for  with relative half-width   0.20. With
  0.05, the required number of failures is

r  6
z/2


2

 6 1.96
  0.20

2

 59.
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Confidence Interval for a Weibull Percentile
Just as the confidence interval for the exponential reliability mean 
is a special case of the confidence interval for the failure percentile,
the confidence interval for the Weibull scale parameter  is a special
case of the confidence interval for the Weibull failure percentile.

When the Weibull shape parameter  is known but the scale
parameter  is unknown, which is often the case, an approximate
confidence interval for the 100f th failure percentile t f is

Ptf1    t f  tf1    1  
where

 
z/2
 r

.

This is the same confidence interval half-width as was obtained for
the Weibull scale parameter.
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Confidence Interval for a Weibull Reliability
When the number of failures r is large, an approximate confidence
interval for the Weibull reliability has the form

P R1    R  R1    1  

where the confidence interval half-width is

 
z/2
r

1  R
R

.

Then the number of failures required to determine the reliability with
relative precision  is

r 
z/2


1  R
R

2

.
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Confidence Interval for a Weibull Reliability
Example: How many units must be tested to failure to determine the
Weibull reliability with 5% precision and 95% confidence at a time
when the reliability is expected to be 90%?
Solution: The required number of failures is

r 
z/2


1  R
R

2

 1.96
0.05

1  0.9
0.9

2

 19.
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Reliability Demonstration Tests
A reliability demonstration test is performed by putting n units on test
for time t and observing the number of failures that occur within that
time, i.e. the test is time-terminated. In order to demonstrate that the
exponential mean life  exceeds a specified value 0 with confidence
1  , that is:

P0      1  
the test parameters must meet the condition:

bc  r;n,p  

where bc;n,p is the cumulative binomial distribution and the
probability of failure at time t is

p  1  Rt;0  1  et/0
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Demonstration Test
Example: Determine the number of units that must be put on test for
200 hours without any failures to show that the MTTF of a system
exceeds 400 hours with 95% confidence. Assume that the life
distribution is exponential and that the test is time terminated.
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Solution: The goal of the experiment is to determine the value of n
with r  0 failures in t  200 hours of testing such that:

P400      0.95

With 0  400 the t  200 hour reliability is:

Rt  200;0  400  e
200
400  0.6065

so the probability that a unit will fail before 200 hours is
p  1  0.6065  0.3935. With r  0 and   0.05 the smallest value
of n that meets the condition:

b0;n, 0. 3935  0.05

is n  6 since:

b0;6,0. 3935  0.04977
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Using MINITAB Stat Reliability/Survival Test Plans
Demonstration:
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Demonstration Test
Example: Determine the number of units that must be put on test for
10000 hours without any failures to demonstrate 90% reliability at
12000 hours with 95% confidence. Assume that the life distribution is
Weibull with   2.2.
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Solution: Following Mathews, Sample Size Calculations, p. 206,
Example 9.18: The goal of the experiment is to demonstrate 90%
reliability at t0  12000 hours with 95% confidence or

P12000  t0.10    0.95

The units to be put on test will be operated for t   10000 hours and
then the test will be suspended.

From Table 9.2 with f0  0.10 and   2.2

f   1  1  f0t
/t0

 1  1  0.1010000/12000
2.2

 0.0681

The number of units that must be tested must satisfy the condition

br  0;n, f   

br  0;n, 0. 0681  0.05

which gives n  43.
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Using MINITAB Stat Reliability/Survival Test Plans
Demonstration:
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Two-Sample Reliablity Tests
 Two-sample reliability tests are used to test for differences between

two independent reliability distributions.
 Such tests may be performed for reliability parameters, percentiles, and

survival rates at a specified endpoint.
 The log-rank test is a popular two-sample reliability test for a

difference in the survival rates between two treatment groups.

Mathews Malnar & Bailey, Inc., Sample Size Calculations 182



Two-Sample Log-Rank Test
 The hypotheses to be tested are H0 : h1t  h2t versus

HA : h1t  h2t where h1t and h2t are the time-dependent
hazard rates

 The hazard ratio h2t/h1t must be constant with respect to time, i.e.
must meet the proportional hazards assumption.

 The log-rank test hypotheses are usually redefined in terms of the
log-hazard ratio, r, which is estimated from survival probabilities s1t
and s2t at any common time t under the proportional hazards
assumption

r 
lns2t
lns1t

 The log-hazard ratio is usually determined from the end-of-test t  t 
survival probabilities.

 The log-rank test hypotheses may be rewritten as H0 : r  1 versus
HA : r  1 where HA is constructed to reject H0 when the treatment
group’s survival rate is significantly greater than the control group’s
survival rate.

183



Two-Sample Log-Rank Test
Two popular methods for calculating power and sample size are
presented for the log-rank test:
 Schoenfeld’s method
 Lachin’s method

The two methods give nearly identical results for the
equal-sample-size case but diverge slightly when the sample sizes
are not equal. Lachin’s method is preferred in the
unequal-sample-size case because it is more conservative.
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Two-Sample Log-Rank Test
The sample sizes required to reject H0 : r  1 versus HA : r  1
when r  rA with power   1   is given by:
 Schoenfeld’s method:

n1  n2 
z  z
lnrA

2
1

1  s1t 
 1

1  s2t 

 Lachin’s method:

n1  n2 
z  z 

2

2  s1t   s2t 
1  rA
1  rA

2
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Two-Sample Log-Rank Test
Example: Determine how many units must be included in a study to
compare the survival rates of two treatments using the log-rank test if
the control treatment is expected to have about 20% survivors at the
end of the study and the study should have 90% power to reject H0 if
the experimental treatment has 40% survivors at the end of the
study. Assume that the hazard rates are proportional and that the
sample sizes will be equal.

Solution: From the expected end-of-study conditions under HA the
log-hazard ratio is estimated to be

rA 
ln0.40
ln0.20

 0.5693.
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Two-Sample Log-Rank Test
Solution(continued): The required sample size by Schoenfeld’s
method is

n 
z  z
lnrA

2
1

1  s1t 
 1

1  s2t 

 z0.05  z0.10
ln0.5693

2
1

1  0.2  1
1  0.4

 79

and by Lachin’s method is

n 
z  z 

2

2  s1t   s2t 
1  rA
1  rA

2


1.645  1.2822

2  0.2  0.4
1  0.5693
1  0.5693

2

 82
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Interference
 Interference failures occur when a quality characteristic exceeds a limit

where both the quality characteristic and the limit are statistically
distributed.

 The figure shows a strength–load interference situation:

8007006005004003002001000-100
Strength and Load Units

6004501500

L

SS-L
f

Distributions of strength, load, and their difference.
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Interference
 If strength and load values are indicated with the symbol x, and if their

probability density functions are given by Sx and Lx, respectively,
then the probability of interference failure is given by

f  




SxS 
xS



LxLdxL dxS.

The necessary integrations may be performed to solve for the failure
probability when Sx and Lx are well defined; however, in many
situations the actual interference analysis is performed by resampling
from sample strength and load data.

 See Mathews for treatment of the normal-normal,
exponential-exponential, and Weibull-Weibull interference failure
sample size calculations.
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Weibull-Weibull Interference
When the strength and load are both Weibull-distributed the
approximate strength/load interference failure rate f is given by

f  L
S

S

 1 
S

L

where   is the gamma function. The approximation is satisfied
when

L
S

S

 1,

which corresponds to small f - the usual condition of interest.
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Weibull-Weibull Interference
Under the assumption that L and S are known, for large samples,
the approximate one-sided upper confidence limit for f is given by

 0  f 

f U  1  

where

f U 


f 1   where

 
zS

 1  S

L

1
nLL

2  1
nSS

2 .

For a specified value of the relative precision of the estimate  in the
equal-sample-size case nL  nS  n, this equation can be solved
for the sample size to obtain

n  z
 1  S

L

2

1 
S
2

L
2 .
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Example: How many measurements of mating components in a
device must be taken to demonstrate, with 95% confidence, that their
true interference failure rate does not exceed the observed failure
rate by 20% if the two distributions are known to be Weibull with
S  2.5 and L  1.5?
Solution: The goal of the experiment is to acquire sufficient
information to demonstrate the following one-sided upper confidence
interval for the interference failure rate f:

P 0  f 

f 1  0.2  0.95.

With   0.2 and   0.05 we obtain the sample size

n  z
 1  S

L

2

1 
S
2

L
2

 1.645
0.2  1  2.5

1.5 

2

1  2.52

1.52

 113.
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Seminar Outline
1. Review of Fundamental Concepts
2. Means
3. Standard Deviations
4. Proportions
5. Counts
6. Linear Regression
7. Correlation
8. Designed Experiments
9. Reliability
10. Statistical Quality Control

a. SPC Charts
b. Process Capability
c. Tolerance Intervals
d. Acceptance Sampling
e. Gage Error Studies

11. Resampling Methods
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SPC Charts and Hypothesis Testing
Shewhart’s SPC charts provide a graphical hypothesis test of
H0 :   CL (the process is in control) versus HA :   CL (the
process is out of control):
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Type 1 and Type 2 Errors in SPC Charts

UCL

CL

LCL

Time

Correct decision

Type 1 error

Correct decision

Type 2 error

H0 is true H0 is false
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Type 1 and Type 2 Errors in SPC Charts

UCL

CL

LCL

Time

Type 1 error rate Power

Type 2 error rate

H0 is true H0 is false
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SPC Run Rule Power
A run rule’s power (its probability of detecting a shift in location) can
be calculated as a function of the size of the shift.
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SPC Run Rule Power
For the rule that the process is declared to be out of control if a
single point falls beyond the usual 3 contol limits applied to an x
chart the rule’s operating characteristic (OC) curve is given by

LCL  x  UCL;  0,x   
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SPC Chart Run Rules
SPC charts are usually operated with several run rules:
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TEST 1: One point beyond   TEST 2: 9 points to one side of CL

TEST 3: 6 point trend up or down TEST 4:  14 points alternating up/down

TEST 5: 2 of 3 points beyond 2 TEST 6: 4 out of 5 points beyond 1

TEST 7: 15 points within +/-1    TEST 8: 8 points beyond +/-1

Created by: Rebecca Malnar 9/12/99
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Design of SPC Chart Run Rules
Good SPC chart run rules must meet the following conditions:
1. A rule must be easy to recognize on the chart
2. A rule must have a low false alarm / type 1 error rate
3. A rule must have a low missed alarm / type 2 error rate

Example: Evaluate the run rule: If at least four of five consecutive
points fall beyond 1 to the same side of the center line then the
process is out of control. (This is one of the Western Electric rules.)
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Solution: This pattern is easy to recognize on the chart so the first
condition is met.

For the second condition, if the process is in control then the
probability that any one point falls beyond 1 of the centerline is:

1  z    0.16

Then the probability that at least four of five points fall beyond 1 of
the centerline is:

b4  x  5;5,0. 16  0.0029

Since this pattern can show up on either side of the chart we have
  20.0029  0.0058 which is acceptably low.
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For the third condition, suppose the process shifts so the new
process mean falls right on a control limit. Then the probability of a
single point falling beyond 1 of the center line is given by:

2  z    0.9772

The probability that at least four of five consecutive points fall beyond
1 of the center line is then:

b4  x  5;5,0. 9772  0.9950

This means that the probability of detecting the shift using this rule is
about 1    0.9950.

This rule meets all three conditions so it is a good run rule.
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np and p Chart Sample Size
Rules for determining sample size for np and p charts:
1. To obtain LCL  0:

n  91  p
p

2. To detect a shift of the fraction defective from p to p   with 50%
probability use:

n 
9p1  p

2

3. To limit the frequency of zero defectives on the chart to less than
5% use:

n  3
p
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Special Run Rule
The n  3/p sample size criterion is often paired with a special run
rule: The process is out of control if two consecutive zeros occur on
the chart. This is a good rule because it meets all of the requirements
of a good run rule:
 It is easy to recognize
 Its type 1 error rate is reasonable   0.052  0.0025
 The rule turns on hard when the process goes out of control low
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c Chart Sample Size
1. To obtain a zero or positive lower control limit use a sampling

unit that is large enough so that c  9.
2. To detect a shift of the mean defect rate from c to c   with 50%

probability use a sampling unit that is large enough so that
c  2/9.

3. To limit the number of occurrences of zero defectives on the
chart to less than 5% use:

c  3

This sample size criterion is often used with a special run rule:
the process is out of control if two consecutive zeros occur on
the chart.
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Multiple Testing Errors in SPC
 SPC is a prime example of an opportunity to suffer from excessive type

1 / false alarm errors caused by multiple testing from keeping too many
run rules on too many charts.

 Each run rule has its own false alarm / type 1 error rate.
 The run rules are not strictly independent of each other but their errors

are roughly additive.
 The error rates from several charts are roughly additive.
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Multiple Testing Errors in SPC
Example: Suppose that four control chart run rules, each with false
alarm / type 1 error rate of about 0.5%, are applied to four control
charts. What is the overall false alarm / type 1 error rate for the family
of rules and charts?

Solution:

 family  
ichart


jrule

 ij

 4  4  0.005

 0.08

That is, we can expect one false alarm / type 1 error to appear at, on
average, in about every 1/0.08  12 sampling intervals. This rate
might be acceptable if we’re sampling hourly; however, we must be
very careful if we intend to sample more frequently or plan to use
more run rules and/or keep more charts.
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Process Capability
 Quality engineers use two process capability parameters:

cp  USL  LSL
6

cpk 
|NSL  |

3
 cp and cpk are surrogates for the fraction defective assuming that the

process is normally distributed:

1  p  LSL  x  USL;,

 6cp  3cpk  z  3cpk 

 Small changes in the values of cp and cpk can cause huge changes in
fractions defective

 There’s LOTS of bad practice out there because quality engineers don’t
realize how much data is required to estimate cp and cpk.
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Process Capability
 A large-sample confidence interval for cp is

Pc p1    cp 
c p1    1  

where

 
z/2
2n

.

 The sample size to obtain confidence interval half-width  is

n  1
2

z/2


2
.
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Process Capability
Example: Calculate the sample size required to estimate the
process capability parameter cp to within 10% with 95% confidence.

Solution: With relative confidence interval half-width   0.10 and
1  100%  95% confidence the required sample size is:

n  1
2

1.96
0.10

2
 193

Note that knowing cp to within 10% still covers a huge, possibly
unacceptably wide, range of fraction defective. For example, if the
95% confidence interval for cp is 1.5  0.15 the ratio of the fraction
defectives when cp  1.65 to cp  1.35 is 64!
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Process Capability
 A large-sample confidence interval for cpk is

Pc pk1    cpk 
c pk1    1  ,

where

  z/2 1
n

1
9c pk

2  1
2

.

 The sample size to obtain confidence interval half-width  is

n  z/2


2 1
9c pk

2  1
2

.

When cpk is very large, this reduces to the sample size required for
estimating cp.
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Process Capability
Example: What sample size is required to estimate cpk to within 5%
of its true value with 90% confidence if cpk  1.0 is expected?
Solution: With   0.05 and   0.05 the required sample size is

n  1.645
0.05

2 1
91.02

 1
2

 662.
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Tolerance Intervals
There are two tolerance interval methods available:
 Normal distribution tolerance interval
 Nonparametric tolerance interval
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Normal Distribution Tolerance Interval
 If the quality characteristic is normally distributed with known mean

and standard deviation then the specifiction limits would be

USL/LSL    zp/2

where p is the allowed fraction defective.
 When  and  must be estimated from sample data, it is necessary to

incorporate the confidence intervals for  and  into the specification
limit calculation. The result is the normal distribution tolerance
interval:
 For a two-sided specification:

LSL/USL  x  k2s

where k2  fp,,n.
 One-sided specification:

LSL  x  k1s

USL  x  k1s
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Tolerance Interval Factors for Normal Distributions
(95% Confidence)

One-sided k1 Two-sided k2

Yield Yield

n 0.99 0.999 0.99 0.999

10 3.98 5.20 4.43 5.65

15 3.52 4.61 3.88 4.95

20 3.29 4.32 3.62 4.61

25 3.16 4.14 3.46 4.41

30 3.06 4.02 3.35 4.28

40 2.94 3.87 3.21 4.10

50 2.86 3.77 3.13 3.99
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Normal Distribution Tolerance Interval
Example: What are the two-sided, 99.9% yield, 95% confidence
normal distribution tolerance limits for a random sample of size
n  40?

Solution: From the table with n  40, 99.9% yield, we have
k2  4.10, so the tolerance limits are:

USL/LSL  x  4.1s

For specification limits set this way, we can be 95% confident that
99.9% of the population will fall in spec.
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Example: What sample size is required to set two-sided, 99.9%
yield, 95% confidence normal distribution tolerance limits at
USL/LSL  x  4s?

Solution: From the k2 table for 99.9% yield the required sample size
is n  50.

Note that this method of setting the tolerance limits does not take into
account variation in future production. If typical process control
methods are used to monitor the process, then shifts in the mean of
about 1 will be expected before the shift is identified and corrected,
so the tolerance limits might be padded by approximately 1 to
protect against such shifts giving:

USL/LSL  x  4  1s

 x  5s
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Nonparametric Tolerance Interval
 When we don’t know the distribution shape we can set nonparametric

tolerance limits equal to the minimum and maximum observed values
in a sufficiently large sample to have 1001  % confidence that the
defective rate is less than 100pU%; that is:

PPxmin  x  xmax  1  pU  1  
 The required sample size is given by

n 
1,4
2

2pU
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Nonparametric Tolerance Interval
Example: What sample size is required to be 95% confident that at
least 99% of a population of continuous measurement values falls
within the extreme values of the sample?
Solution: With   0.05 and pU  0.01, the required sample size is

n 
0.95,4
2

2  0.01
 475.

That is, draw and measure a random sample of n  475 units. Set
the specification limits to

LSL  x  USL  xmin  x  xmax

and 99% of the population should fall within those limits with 95%
confidence.
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Acceptance Sampling by Attributes
(From Mathews, Sample Size Calculations, p. 80) Given two points
on an operating characteristic (OC) curve corresponding to an
Acceptable Quality Level AQL condition and a Rejectable Quality
Level RQL condition:

PAp0  AQL  1  

PAp1  RQL  ,

the sample size required to satisfy both conditions is

n 
z/2 p01  p0  z p11  p1

p1  p0

2

.
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Acceptance Sampling by Attributes
Example: Determine the sample size for the attributes sampling plan
that will accept 95% of the lots with 0.1% defectives and reject 95%
of the lots with 0.4% defectives.

Solution: The two specified points on the OC curve are
p0  0.001,PA  1    0.95 and p1  0.004,PA    0.005 so
the sample size is

n 
z/2 p01  p0  z p11  p1

p1  p0

2


1.645 0.0010.999  1.645 0.0040.996

0.004  0.001

2

 2698
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Using MINITAB Stat Quality Tools Acceptance Sampling by
Attributes
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Acceptance Sampling by Variables
An acceptance sampling plan for variable/measurement data can be
used to control the fraction defective relative to specification limits on
the variable/measurement response. The decision to accept or reject
lots is based on the sample mean x and either the known value of the
population standard deviation  or the sample standard deviation s.

USL

USL

x

x

0

0

1

1

p0

A/R

x

x

x

x

a

b





p
1

c

d

A/R

223



Acceptance Sampling by Variables
Given the AQL and RQL conditions:

PAp0  AQL  1  

PAp1  RQL  

 When the population standard deviation is known the required sample
size is (From Mathews, Sample Size Calculations, p. 252, Equation
10.79)

n 
z  z
zp0  zp1

2

 When the population standard deviation is unknown the required
sample size is (From Schilling, Acceptance Sampling in Quality
Control)

n  1  k2
2

z  z
zp0  zp1

2

where

k 
zp1z  zp0z

z  z .

Mathews Malnar & Bailey, Inc., Sample Size Calculations 224



Acceptance Sampling by Variables
Example: Determine the sample size for the variables sampling plan
that will accept 95% of the lots with 0.1% defectives and reject 95%
of the lots with 0.4% defectives. Assume that  is known.

Solution: The sample size is given by

n 
z  z
zp0  zp1

2

 1.645  1.645
3.09  2.652

2

 57
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Using MINITAB Stat Quality Tools Acceptance Sampling by
Variables
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Acceptance Sampling by Variables
Example: Determine the sample size for the variables sampling plan
that will accept 95% of the lots with 0.1% defectives and reject 95%
of the lots with 0.4% defectives. Assume that  is not known.

Solution: The sample size is

n 
z  z
zp0  zp1

2

 1.645  1.645
3.09  2.652

2

 57
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Acceptance Sampling by Variables
Example: Repeat the preceeding sample size calculation assuming
that  is not known.

Solution: For the  unknown case the k factor is

k 
zp1z  zp0z

z  z

 3.09  1.645  2.652  1.645
1.645  1.645

 2.871

and the sample size is

n  1  k2
2

z  z
zp0  zp1

2

 1  2.8712
2

1.645  1.645
3.09  2.652

2

 289
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Acceptance Sampling by Variables
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Relative Efficiency of Attributes and
Variables Sampling Plans
 An attribute sampling plan judges units to be in or out of specification.
 A variables sampling plan uses measurement data to assess

conformance to specification.
 There are sample size calculations available for both methods. When

   and  for the variables sampling plan is known, the ratio of the
attributes to variables sample size is approximately

nattributes
nvariables  1

4
zp0  zp1
p1  p0

2

.
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Relative Efficiency of Attributes and
Variables Sampling Plans
Example: Determine the sample size ratio for the attributes and
variables inspection plans that will accept 95% of the lots with 0.1%
defectives and reject 95% of the lots with 0.4% defectives. Assume
that  for the variables plan is known.
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Solution: The two points on the OC curve are
p0  0.001,1    0.95 and p1  0.004,  0.05. The ratio of the
attributes- to variables-based sample sizes is approximately

nattributes
nvariables  1

4
z0.001  z0.004

0.004  0.001

2

 1
4

3.090  2.652
0.004  0.001

2

 48

which is in excellent agreement with the exact ratio from the
MINITAB solutions:

nattributes
nvariables  2958

57
 52
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Gage Error Studies
 Quality engineers use gage error studies to validate measurement

methods. (Gage error studies are analogous to the requirements of
FDA, CVM64: Analytical Method Validation.)

 A typical gage error study uses several operators who measure the
same units two or more times.

 The data are analyzed by random effects ANOVA and variance
components analysis. Variance components are used to estimate
repeatability or equipment variation EV and reproducibility or
appraiser variation AV.

 Acceptance criterion for EV and AV is that they must be less than 10%
of the tolerance for a good measurement and less than 30% of the
tolerance for a marginal measurement.
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Gage Error Studies
 The confidence interval for EV is

P 0  EV 
df
,df
2 EV  1  .

 An approximate confidence interval for AV is

P 0  AV 
dfO
,dfO
2 AV  1  .

df df/0.05
2 df df/0.05

2

1 15.95 40 1.228

2 4.415 50 1.199

3 2.920 80 1.150

4 2.372 100 1.100

6 1.915 300 1.050
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Gage Error Studies
Example: Estimate the upper confidence limits on EV/Tol and AV/Tol
if a crossed GR&R study with 3 operators, 10 parts, and 2 trials

delivers EV/Tol  10% and AV/Tol  10%. If the results are
unacceptable, recommend a new experiment design.

Solution: Ignoring the operator by part interaction, the ANOVA will
have dfO  2 and df  48. From the table of multipliers for the upper
confidence limits, UCL

EV/Tol
 1.2  0.10  0.12 or 12% which is

marginal and UCL
AV/Tol

 4.4  0.10  0.44 or 44% which is very bad.

The problem is the low number of degrees of freedom for estimating
AV which can only be resolved by using more operators. With 7
operators dfO  6 the new AV upper confidence limit would be
UCL

AV/Tol
 1.9  0.10  0.19 or 19% which is marginal. Using any

more operators is impractical. The number of parts could be reduced
to 6 or 8 to keep the total number of measurements reasonable as
long as the variation in the parts is enough to challenge the
operators.
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Gage Error Studies
Recommendations:
 The number of parts affects EV but not AV. Use enough parts to

challenge the operators.
 Use as many operators as possible — two or three are insufficient.

With seven operators dfO  6, the upper confidence limit on AV will
be about twice the point estimate.

 The number of trials affects EV but not AV. Two trials are usually
sufficient. Three may be a waste of time.
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Seminar Outline
1. Review of Fundamental Concepts
2. Means
3. Standard Deviations
4. Proportions
5. Counts
6. Linear Regression
7. Correlation
8. Designed Experiments
9. Reliability
10. Statistical Quality Control
11. Resampling Methods
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Resampling Methods
 Monte Carlo - Resamples drawn from an assumed parametric

distribution
 Bootstrap - Resamples drawn from the original sample
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