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Getting to Know You

@® Who are you?
m Name
m Title
s Company

Do you perform sample size and power calculations for your
organization or are you just here for the CEUs?

Are sample sizes set objectively i your organization or are they based
on arbitrary or historical choices?

Do you use sample size or power software?
Do you use published standards?
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Definition
An experiment is any activity that involves data collection, analysis,

and interpretation for the purpose of making decisions about how to
manage a process.

If an experiment is worth doing, it should be done with the right
sample size.

"To call in the statistician after the experiment is done may be no
more than asking him to perform a post-mortem examination: he may
be able to say what the experiment died of.” - Sir Ronald Fisher
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Point of View

® We take the point of view of a statistical consultant who is expected to
provide technical support for sample size and power calculations but
who has no experience with or knowledge of the process.

@ The statistical consultant is dependent on the researcher for:

Information about the process

The limitations and goals of the experiment

Executing the experiment

Reporting deviations from the experiment plan

Investigating unusual observations

Recommending first principles to guide the analysis of the data
Interpreting the results for practical significance



Software

Piface - www.stat.uiowa.edu/~rlenth/Power/
PASS - www.ncss.com

MINITAB - www.minitab.com
R - www.r-project.org

An 1mportant trick: Most sample size software does calculations for
hypothesis tests but not for confidence intervals. To do the sample size
calculation for a confidence interval set the power to 50% 1n the sample
size calculation for a hypothesis test.
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Approximate Methods

@ Factors of two are only important in matters of salary (at least in
physics).

® Power and sample size calculations are done when there are significant
uncertainties in inputs to the calculations, so approximate calculation
methods may be tolerated.

m Ignore the continuity correction for discrete random variables

m Use large sample approximations with standard deviations
determined by the delta method

m Everything looks normal if the sample size 1s big enough
® Sources of uncertainties:
Value of the standard deviation
Value of the confidence interval half-width and confidence level
Value of hypothesis test effect size and power
Knowledge of the process
Likelihood that the experiment will go as planned
Validity of the analysis method
Assumption violations



Probability Distributions

® Normal

@® Student’s?

® Chi-square (y?)
® F
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Normal Distribution

p z_p

0.0010 3.009

0.0025 2.81

1 96 0.0050 2.575

20_025— : 0.0100 2.33
0. 1.

0. 1.645

0. 1.282

0. 0.842

-1.96 -1 0 1
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Student’s 7 Distribution

Distribution Plot

T, df=9
5 2.262 0
0.3
.lg 0.2
&
0.1
025 __g
2.262 0
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Chi-Square (y?) Distribution

Distribution Plot
Chi-Square, df=3

/.82

0.251

0.204

Z 0.151

c
& 0.10

0.05

0.00

3 /.82



F Distribution

Distribution Plot
F, dfi=4, df2=35

2.64

0 1 2.641
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Delta Method

Probability distributions often have undesirable properties such as
skewness or heteroscedasticity.

For many of these distributions, a mathematical transformation of the
original random variable results in a distribution that 1s better behaved.

Transforming a badly behaved distribution into a better behaved one
allows simpler and better known analysis methods to be used.

The delta method 1s used to estimate the standard deviation of a
transformed distribution from the original distribution.

It’s not necessary to understand how to apply the delta method;
however, 1t’s very helpful to make use of its results.
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Delta Method

Example: When the distribution of sample counts x is Poisson with
mean u, = A and standard deviation o, = J1, the sampling
distribution of ,/x is approximately normal with mean

Hix = JA
and standard deviation

Mathews Malnar & Bailey, Inc., Sample Size Calculations 16



Delta Method

Example: An approximate 95% confidence interval for A is
P(ﬁ —Zo.ozs/G\ﬁ < ﬁ < ﬁ +Zo,025/6\ﬁ> = 0.95

P(ﬁ—1<ﬁ<ﬁ+l>=0.95
P((Jx-1)° <A< (Jx+1)")=0.95
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Delta Method

Example: Determine the 95% confidence interval for the Poisson
mean if x = 25 counts are observed.

Solution: By the delta method:
P((25-1)" <2< (V25 +1)7) = 0.95
P(16 < A <36) =0.95

The exact confidence interval is:
P(16.2 < 1 <36.9) =0.95

16.2 36.9 16.2 36.9

J Y N

T [ S . — R e — I e L
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Sample Size Calculations
To calculate the sample size, we must know the:

Purpose of the experiment

Type of data to be collected

Parameter to be studied

Experiment design

Intended statistical analysis and decision criteria
m Confidence interval half-width, confidence level
m Effect size and power, significance level

Population standard deviation
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Sample Size Myths

@ There are many sample size myths that are not true
® Assuming variable data, it’s common to see statements like "It is
generally accepted that the sample size n = 30 1s sufficient."
m This statement is false ...
m Because the sample size must be matched to an intended analysis
method ...

m So there are different sample sizes required for studying the mean,
standard deviation, proportion defective relative to a specification
limit, process capability, and distribution shape.
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Confidence Interval for the Mean

The Central Limit Theorem says that the distribution of sample
means (x) is normal with mean uz = u, and standard deviation
oz = 0y//n. This result can be used to construct probability

statements about the range of x values such as
O(uy—0<x<uy+o0)=1-a
where the interval half-width ¢ is

0 = Za/20 x
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Confidence Interval for the Mean

If we solve for u, we obtain the confidence interval for the unknown
population mean:

Ox—-0< uy<x+9)=1-a.

o/ 2\ L o/2

LCL X uCL
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Confidence Interval for the Mean

@ For a specified value of the confidence interval half-width 6 (the
precision of the estimate) and given (known) o, and « related by:

0 = Za/20 x

— Za/26x/ﬁ
we can solve for the sample size:

o (e

® When the population standard deviation is unknown and must be
estimated from the sample data the normal (z) distribution must be
replaced with Student’s ¢ distribution:

A 2
y = [a/20 x
5 .

Because #,, depends on n through its degrees of freedom value this
equation must be solved by iteration.
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Confidence Interval for the Mean

Example: Determine the sample size necesary to estimate, with 95%
confidence, the mean of a population with precision 6§ = 10 when

o, = 20.
Solution: If we knew o, then:
n:<200256x> (1 96 x 20

Withn = 16, v = 15, and #9905 = 2.13 SO

o (toozsax> (2 13x20\2 _ 0.

Eventually, withn = 18, v = 17, and t9.05 = 2.11:

n:<t00256x> (211><20 _ 1%

|
ek
.O\
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Confidence Interval for the Mean
Solution by Piface with Cl for one mean:

B CI for a mean
Options Help

| Finite population

Value »||17.76
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Confidence Interval for the Mean

Solution by MINITAB with Stat> Power and Sample Size>
1-Sample t:
l

L File Edit Daka Calc Stak Graph Editor Tools  Window  Help  Assiskank
= E r L 4 O 72 LBEOEE B0 ||EEHE
| =l | =l %

Power Curve for 1-Sample Z Test

MTE > Power:

3UBCH TCne: : |
— e e Power and Sample 5ize for 1-Sample t @

PR s Specify values for any bwo of the Following:
SUBC> Sicmea 20; e
SUBC>  GPCurve. ample sizes: ||

Differences: |10

Power and Sample Size

Fower values: | 0,50

Standard deviation: 20

1-3anmple t© Test

Testing wean = null (versus not = null)
Calculating power for mean = null + difference

Alpha = 0.05 Assuwed standard deviation = 20 Al Graph...

Help Ok Zancel

Sample Target
Difference Size Fower Actual Power
i0 1a 0.5 0.516365
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Confidence Interval for the Mean

Solution by MINITAB with Stat> Power and Sample Size> Sample
Size for Estimation> Mean (Normal):

MTE > 23CI;

SUBC> NMean:;

SUBC> Sigma 20;
SUBCH Confidence 95.0;
SUBC= IType 0O

SUBC HError 10.

Sample Size for Estimation

Hethod

FParameter Mean
Disztrilbution Normal
Standard deviation 20 [estimate)
Confidence lewvel 95%

Confidence interval Two-sided

Fe=zults=

Margin Sample
of Error Size
10 13

Sample Size for Estimation

Parameter: |(gEERNAR L=

Planning ¥alue

Standard deviation: | z0

Estimakte sample sizes j

Margins of errar for confidence interwvals: 10

Help | K,

Opkions. ..

ance
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Confidence Interval for the Mean

@® To calculate the sample size we need a,G,, and 8.
® Use o = 0.05 or whatever value is appropriate.
@® Sources for the o, estimate:

Historical data

Preliminary study

Data from a similar process

Expert opinion

Published results (beware of publication bias)
Guess

@® Confidence interval half-width (0):

Must be chosen by the researcher

Must be sufficiently narrow to indicate a unique management
action

Start from outrageous high and low values, work to the middle
Be careful of relative confidence interval half-width
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Specifying the Confidence Interval Half-width

® In measurement units:
Ox-0< uy<x+90)=1-a

(Note: This is the only method supported in most sample size
calculation software. The other methods express o in relative terms and
are not supported in software.)

@® Relative to the mean:
OXx(l-0) < ur <x(1+06))=1-a
@® Relative to the standard deviation:
Ox—0s < Uy <Xx+0s)=1-a

m Jacob Cohen, Statistical Power Analysis for the Behavioral
Sciences.
m This method 1s bad practice! See Russ Lenth’s discussion.
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Sensitivity of the Confidence Interval
If the standard deviation is unknown the sample size is

A 2
— [a/20 x
5}

@ Student’s ¢ distribution approaches the normal (z) distribution very
quickly so the approximation of #,, with z,, has little effect on the
sample size unless the sample size 1s very small.

® Compared to other factors, the magnitude of 7., or z,» changes slowly
with a so the value of « has little effect on the sample size.

@® Sample size is proportional to the square of the standard deviation, i.e.

2 . . :
n « 6., so changes to the estimated value of &, will have a big effect

on sample size. For example, doubling the value of the standard
deviation estimate will quadruple the sample size.
@® Sample size is inversely proportional to the square of the confidence

interval half-width, 1.e. n « 5—12, so changes to the estimated value of 0

will have a big effect on sample size.
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Sensitivity of the Confidence Interval

® Recommendations:

Don’t worry too much about the value of a (just use a = 0.05).
Don’t worry too much about the approximation ¢4, =~ zg.

Be very careful determining the standard deviation.

Be very careful choosing a value for the confidence interval
half-width.

Mathews Malnar & Bailey, Inc., Sample Size Calculations
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Confidence Interval for the Mean

Exercise: How many observations are required to determine the
number of flexing cycles required to break paper clips?

@® What’s casy to determine?
@® What’s hard to determine?
@® What are the consequences of variation in those choices?
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Hypothesis Tests

Hypothesis tests are used to test and compare population parameters
and distribution shapes of one, two, and many populations.

Hypothesis tests involve two complementary hypotheses: the null
hypothesis (Hy) and the alternate hypothesis (H4).

State what’s to be demonstrated in 4 and 1ts complement is Hy.

"The extraordinary claim requires extraordinary evidence." - Carl
Sagan. The extraordinary claim i1s /4 and its complement, the status
quo, is Ho.

Reject Hy 1n favor of H,4 when the sample data are statistically unlikely
to occur under H,.

There 1s no opportunity to accept Hy.
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Errors in Hypothesis Testing

UCL

CL

LCL

HO is true HO is false
Correct decision
Correct decision K

_:—'—'_'_'_FFF'J

T

p———

O\

Type 1 error

R
\\

Type 2 error

Time
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Test for the Mean (c Known)
@ The hypotheses to be tested are:

Ho : u = poversus Hy . u + uo.

@® The test statistic is:
X — Ho

o/ Jn

Z:

® The acceptance interval for H is:
D(—zyn <z <zgn) =1-a.

a
Accept H,
-t -
o/2 / o/2

N | XI

Z /2 0 Zo/2

Mathews Malnar & Bailey, Inc., Sample Size Calculations
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Test for the Mean

@® The effect size O is:

@® The power of the test is:

0= U — to = (Zar +Zﬂ)%
w = O(—zp < z < o) where zg = 0 ~ Za2
ox/Jn

S N

e
o
x|

(e2]
)
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Test for the Mean
® The quantity:

gb = Zg2 T Zp
)
oyl Jn
is called the noncentrality parameter.
® The sample size is:

n= ((Za/z +Zﬁ)%>2

@ The values of a and S have little effect on the sample size so, as with
confidence intervals, focus your attention on determining appropriate
values for o, and 0.
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Test for the Mean

Example: An experiment will be performed to test Hy : u = 60 versus
H4 : u # 60. The standard deviation is known to be o, = 5. What
sample size is required to reject Hy with 7 = 0.90 when u = 637
Assume that the distribution of x is normal and use o = 0.05.

Solution: The effect size is 6 = 63 — 60 = 3 with associated power
w = 0.90 or type 2 error rate f = 0.10. Then the sample size must be:

- ( (z0.025 +20.10 )0« )2

5
B ( (1.96 + 1.282)5 )2
B 3
= 30
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Test

for the Mean

Solution by MINITAB with Stat> Power and Sample Size>
1-Sample Z.

[

File Edit Data Calc Stak Graph  Editor  Tools  Window  Help  Assistant

NV : ]

=H & B v E ot )M

| E |

ABEOE 8%

= %

EEE

Melcome to Minitab, press Fl for help.
HNTE > Power:
IUBC> Zione;

3UBCH Difference 3;
3UBCH Fower 0.20;
SUBCH Sicrna &:

3UBCH GRCurwve.

Power and Sample Size
1-Sample Z Test
Testing mean = null (wversus not = null)

Caleulating power for mean = null + difference
Llpha = 0.05 Assumed standard deviation = 5

Jample Target
Difference S3ize Power Actual Power
3 30 0.9 0.90764z2

Power Curve for 1-Sample Z Test

Power and Sample Size for 1-5ample Z

Specify values For any bwao of the Following:

X

Sample sizes: ||

Differences: | 3

Power values: | 0,90

Standard deviation: 5

Options. .. | araph... |
(o4 | Cancel |

Help

Mathews Malnar & Bailey, Inc., Sample Size Calculations
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Test for the Mean

Power Curve for 1-Sample Z Test

1.0
Sample
Size
E— 30
0.8 A ssumptions
Alpha 0.05
StDev 5
Alternative Not =
0.6
o
3
o
0.4-
0.2
0.0 T T T T T T T

-3 -2 -1 0 1 2 3
Difference



Test for the Mean (o, Unknown)
@ The hypotheses to be tested are:

Ho : u = poversus Hy . u + uo.

® If o, is unknown, the test statistic is:
_ X~ Ho

[ = .
s/Jn

® The acceptance interval for H is:
D(—tgny <t <typy)=1—awherev=n-—1.

@® The distribution of # under Hy is the well known central Student’s ¢
distribution but the distribution of # under H 4 is the less well known
noncentral Student’s ¢ distribution.

Mathews Malnar & Bailey, Inc., Sample Size Calculations
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Test for the Mean (o, Unknown)

J/ZI\ o J/l\ T
5 0 5 10 15 20 5 0 5
4 4
/}\\:4’4):4 /]\ o




Test for the Mean (o, Unknown)

@® The exact power is given by:
)

oy

® Find the sample size for a target power value by iterating over the
sample size until the power requirement is satisfied.

® When the sample size is large, ¢t ~ z and the normal distribution power
and sample size methods are good approximations.

® Usec ¢ ~ z as a starting point for manual iterations to find a sample size.

lan = Ip¢ where ¢ =

Mathews Malnar & Bailey, Inc., Sample Size Calculations 44



Test for the Mean (o, Unknown)

Example: For the one-sample test of Hy : u = 30 versus H, : u + 30,
what sample size is required to detect a shift to u = 32 with 90%
power? The population standard deviation is unknown but expected
tobeo ~ 1.5.

45



Test for the Mean (o, Unknown)
Solution: Assuming that ¢ ~ z:

_ ( (Z0.025 +20.10 )0« )2
"= 5

((1.96+1.282)1.5 )2
2

6

A N\ 2
= ( (#0.025,5 + %0.10,5)O x )
B o)

_ ( (2.57 +21.48)1.5 )2

Try again:

=9.2
Further iterations indicate that n = 9.

Mathews Malnar & Bailey, Inc., Sample Size Calculations
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Test for the Mean (o, Unknown)
Solution (continued): The exact power with n = 9 is given by the

solution to:
0
tan = tpy Where ¢ = = :
oxlJn
So
2
= =4.0

¢ 1.5/4/9
and

tooas = 2.300 = tp40
which gives

7=1-p8=0.9366

(Hint: In MINITAB use the Calc> Probability Distributions> t menu
to perform the calculations.)
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Test for the Mean (o, Unknown)
Solution by Piface with One-sample t test (or paired t):

One-sample (or paired) t test Q@@

Options Help

. 2]

sigma

Value » |15 ok |
-

True [mu - mu_0|

Value | |2 ok |
.

n

Vel v/ [9

power "

Value ~ 9367 ok

Solve for n v

alpha 0.05 v | v Two-tailed
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Test for the Mean (o, Unknown)

Solution by MINITAB with Stat> Power and Sample Size>
1-Sample t:
|

L File Edit Data Calc 5Stat Graph  Editor  Tools  Window  Help  Assistank
=H S B« EH L # QOFE AEBEOE E M
| = | =l %

Power Curve for 1-Sample t Test

MTE > FPower:

SUEBC> Tone: ;
SUBC> Difference Z2: Power and Sample Size for 1-5ample t @

SUBC> Power 0.90;
STRC Sicms 1.5: Specify values for any bwo of the Following:
SUBCH CRCurve. Sample sizes: |

i DiifF :
Power and Sample Size ifferences: |2

Power walues: |D.QD
1-Sample t Test

Standard deviation: ;
Testing mwean = null (versus not = null) L3
Calculating power for mwean = null + difference
Alpha = 0.05 Assumed standard deviation = 1.5 Cpkians, .. Graph...

Help ] o Cancel

Sample Target
Difference Size Power Actual Power
2 a 0.9 0.936743
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Test for Two Means

There are too many variations on tests for two means to discuss all
of them here. The conditions that affect which test to use are:
Known or unknown standard deviations

Equal or unequal standard deviations

Equal or unequal sample sizes

One sample size fixed

Significance test or equivalence test
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Test for Two Means

In the test of Hy : u; = uy versus Hy : u; +# up, when the standard
deviations are known and equal (i.e., o1 = 0, = o¢), the test statistic
IS:
X1 — X2
661/ nll T nlz
When n, = n, = n, the power is given by
T = P(—0 <z <zp)

T A
Zﬁ: %/G\—‘U—Za/z.

The approximate sample size to obtain a specified power value is

A 2
ny = ny = Z(Za/z +Z,3)2<XL> .

Z:

where
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Test for Two Means

In the test of Hy : u; = uy versus Hy : u1 + uy; when the treatments
are homoscedastic (i.e., o1 = 0, = o) but the standard deviations
are unknown the test statistic is:

X1 — X2
Sex/nll t nlz
where s, Is the standard error. When n, = n, = n, the power is given
by

[ =

m = P(—0 <t <tp)

where

A
Ip = % ,\—'u — lap2-
O¢

The approximate sample size to obtain a specified power value is

A 2
n|y = ny = 2(ta/2 -I—tﬁ)z(X;) .
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Test for Two Means

Example: An experiment will be performed to test Hy : u; = u»
versus H, : u; + u». The standard deviations are homoscedastic
and known to be o, = 50. What sample size is required to reject H
with 7 = 0.90 when the difference between the means is Ay = 807
Assume that the distributions are normal and use o = 0.05.

Solution: Starting from ¢ ~ z:

2

— 2(1.96 + 1.282) ( )

=9
Another iteration using ¢ gives n = 10.
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Test for Two Means
Solution by Piface with Two-sample t test:

Two-sample t test (general case)

Cptions  Help

sigmal

Value v [ [50

sigmua?

Value v 50

v Equal sigmas

nl

[Value v

n?

Value v £

Allocation

[Eal

QK

OF

v Two-tailed Alpha |_|:|5

| Equivalence

Degrees of freedom = 16

True difference of means 2

\Value | |20 ok
Power 8
| Value v | [|2596 o |
Solve for ' Sample size ~|

Mathews Malnar & Bailey, Inc., Sample Size Calculations
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Test for Two Means

Solution by MINITAB Stat> Power and Sample Size> 2-Sample t:

MTE = Fower:
SUBC: TTwo:

SUBC: Difference 80:
SUBC: Fower 0.90;
SUBC> Sigma 50;

SUBC= FPCurve.

Power and Sample Size
Z2-Sample t Test

Testing mwean 1 = mean 2 [(Versus not =)

Calculating power for mean 1 = mean 2 + difference

Alpha = 0.05 Assumed standard deviation = 50

Sample Target
Difference Size Fower Actual Power
a0 i0 0.9 0.922373

The =sample =ize iz for each group.

Power and Sample Size for 2-5ample t

Specify values For any bwo of the Following:

]

Sample sizes: ||

Differences: |BD

Power values: |D.9D

Standard dewviation: 50

Options. ..

Graph...

Help | (] 4

iZance
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Multiple Comparisons Tests

@ Ifsimultaneous confidence intervals or tests are required, use a multiple
comparisons method to control the type I error rate for the family of
tests. For example:

Bonferroni-corrected two-sample ¢ tests

Tukey’s HSD test for all possible comparisons.

Dunnett’s test for comparisons between treatments and a control.
Hsu’s test for comparisons to the best (highest or lowest).
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Multiple Comparisons Tests

® Apply Bonferroni’s correction to the type 1 error rate and use the
relevant two-sample test to approximate power and sample size for
multiple comparisons tests as long as the number of comparisons 1sn’t
too large. In general, if there are K simultaneous confidence intervals or
tests planned then a for the individual confidence intervals or tests
should be:

A family

—x

@® Bonferroni’s method is conservative.i.e. insensitive to small but
possibly important differences between the treatment means, so the
sample size calculated using the Bonferroni correction will be slightly
larger than the exact sample size calculated for other analysis methods
such as Tukey’s and Dunnett’s. The difference between the
approximate and exact sample sizes 1s usually small compared to the
effects on sample size caused by uncertainties in the values of the
standard error and the effect size.

a:
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Multiple Comparisons Tests

@® When the number of multiple comparisons becomes very large
Bonferroni’s method becomes very conservative. A less conservative
method of correcting a for individual tests 1s Sidak’s or Dunn’s
method:

1

where K 1s the number of tests required.
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Multiple Comparisons Tests

Bonferroni’'s method applied to all possible pairwise comparisons
among k treatments leads to

K ( ) k(k—l)

and
2 O 2
n;, = Z(Za/z -|—Zﬁ) ( < )
7
where
. A family
o = K

Note: The sample size given by this method is very close to the exact
sample size calculated for ANOVA.
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Multiple Comparisons Tests

Example: For five treatment groups, determine the sample size
required per treatment to detect a difference Au = 200 between two
treatment means using Bonferroni-corrected two-sample ¢ tests for all
possible pairs of treatments with 90% power. Assume that the five

populations are normal and homoscedastic with 5. = 100.
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Multiple Comparisons Tests

Solution: With £ = 5 treatments there will be K = (g ) =10

two-sample ¢ tests to perform. To restrict the family error rate to
o umiy = 0.05, the Bonferroni-corrected error rate for individual tests is

_0.05 _
@ = 902 = 0.005.

With ¢ ~ z, the sample size per treatment group is

2
_ ( (20.0025 +ZO.10)/G\€ >
n, = 2
Ap

2
_ 2( (2.81 + 1.282)100) _9

200
Further iterations using ¢ instead of z converge to n = 12.
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Multiple Comparisons Tests

Solution by Piface:

Two-sample t test (general case)

Ciptions  Help

sigmal

Vale | [100

sigmal

Value v | [100

v Equal sigmas

nl

[vaue [»] [200

Vale v | [0

nl

v Two-tailed  glpha |_|:||:|5

| Equivalence

Degreez of freedom = 20

True difference of means

Value v [ [11

Allocaton

Power

| Vae v | [9207

Sohre for
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Multiple Comparisons Tests

Solution by Piface:

One-way ANOVA

Options Help

Levels / Sample size Random effects Contrasts across fived levels

levels[A] | SD[Within] " | Contrast levels of 'Y

Value & |5 ak Value + | |100 \ ak

’ ’ ' _l Conirast coefficients -11

n[Within] -

‘Valuﬁ v 9 OF
Method |[ISTETENN v #means S
Alpha 005 v| #Hiests |10
Detectable conirast -
Vahe | 200 o |
Power = .8896
0 2 . s a i
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Multiple Comparisons Tests

In an experiment to compare K treatment groups to a single control
group (that is, comparisons between treatments are not of interest),
the control group’s importance in the analysis suggests that it
deserves to have a larger sample size than the treatment groups.
The near-optimal allocation of observations to treatment and control

groups is
no = I’li‘/E

where n( is the number of observations in the control group and #; is
the number observations in each of the treatment groups. The
sample size for the treatment groups is given by:

- (1 Jo oo (55)

where the Bonferroni-corrected type 1 error rate is
A family
T

a:
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Multiple Comparisons Tests

Example: Determine the sample size required to test five treatment
groups against a control group if the tests must detect a difference
Au = 200 between a treatment mean and the control group mean.
Assume near-optimal allocation of samples to the treatments and the
control and 90% power. Assume that all of the populations are

normal and homoscedastic with 6. = 100.
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Multiple Comparisons Tests

Solution: With five treatment groups and one control group there will
be K = 5 two-sample ¢ tests. To restrict the family error rate to
o umiy = 0.05 the Bonferroni-corrected error rate for individual tests is

_0.05 _
o= 492 = 0.01.

With ¢ ~ z, the sample size for the treatment groups will be

2
=1+ -1 (20.005 + 20.10)0 ¢
| JK Au

(.1 ((2.575+1.282)100 "
N /3 200 -

and the sample size for the control group will be
no = nivK = 645 = 14.

The number of error degrees of freedom will be
dfe = 5(6—-1)+(14-1) = 38 so the assumption that r ~ z is justified.
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Standard Deviations

® Sample size and power calculations for standard deviations are based
on the chi-square (y?) distribution.

@ The accuracy of the y? distribution is VERY sensitive to deviations
from normality so be very careful to check the normality assumption.

@ The y? distribution can be difficult to work with but it can be
approximated by the normal distribution when the sample size 1s
sufficiently large.

® Follow up an approximate sample size calculation with an exact
calculation if the approximate method delivers a small sample size.
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Confidence Interval for o

@ If the population being sampled is normal, the distribution of
(n—1)s?/c? is y? with v = n — 1 degrees of freedom, so:

n—1)s?
P(%%{Q < ( 62) < X%—a/Z) =1-a.

@® The exact confidence interval for o is:

Pl s ”2_1 <o <s n;l =1-a.
Xl1-an Xar2
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Confidence Interval for o

@® When the sample size is very large, the y? distribution is approximately
normal with 1, = vand o, = J2v.

® Then an approximate large sample confidence interval is:
P<v—za/2 2v < y? < v+za/zm> =1-a
c=1-a
Pis(1-0)<o<s(l+0))=1-a

where

5 — Za/2 .
J2n
® The sample size required to obtain a specified relative confidence
interval half-width 1s
1/ Zar 2
T2 ( 5 ) |
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Confidence Interval for o

Example: What sample size is required to estimate o with 10%
precision and 95% confidence?

Solution: The desired confidence interval has the form
P(s(1-0.10) <o <s(1+0.10)) = 0.95.

With o = 0.05 and 6 = 0.10, the sample size required to obtain a

confidence interval of the desired half-width is

1 /1.96\% _
"‘2(0.10 = 193.
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Confidence Interval for o

Solution by MINITAB using Stat> Power and Sample Size> Sample
Size for Estimation> Standard Deviation (Normal):

MTE » 35CI:
SUBC> MNatDhew 100;
SUBCH Confidence 95.0;

i ITvps O Sample Size for Estimation ﬁ]
3UBC- MError 10. =

; : : 1= N |~ and ard devviation (Mormal)
Sample Size for Estimation
Flanning Yalue

Hethod Standard deviation: | 100

Parameter Jtandard deviation - .

Distribution Hormal Estimate sample sizes j

Stan-:_iard Hevaaiaon 1819 Margins af error For caonfidence inkervals: 10
Confidence level 95%

Confidence interval Two-=zided

Options. ..

Results Help [o]3 Cance

Margin Sample
of Error Jize
10 234
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Pilot Studies

® What sample size is required for a pilot study to obtain a sufficiently
accurate estimate of the standard deviation to use in the sample size
calculation for a primary experiment?

@ If ) is the maximum allowable relative error in the sample size of the
primary experiment with associated confidence level 1 — a, that 1s,

Pn(l-0)<n<n(l-9))=1-a,
then the sample size of the pilot study must be:

=23’
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Pilot Studies

Example: The sample size required in a preliminary experiment to
determine o, sufficiently well so that the sample size in a primary
experiment is within 10% of the correct value with 95% confidence is:

o[ 1.96 \*

”‘2<01>
~ 769

Using Piface Pilot study:

Pilot study
Options Help

Percent by which N is under-estimated

Value ~ | 10 _»|

Risk of exceeding this percentage
Value + .0249

d.£ for error in pilot study
Value & | 730
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Test for ¢
@ The hypotheses to be tested are:

Hy : 0% = o versus H; : 6% > o3.
@® The test statistic is:
,  (n—1)s?

o

X

where the y? distribution has v = n — 1 degrees of freedom.
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Test for ¢~

@ At the critical value of the sample variance 575

2 _ %%—aG% _ %%G%
SART T T i
Accept H, Reject Hy

X (Ho)

1 (Ha)
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Test for ¢
® The power is:

where

T =P(ys < x* <o)

® The exact sample size is determined by the condition:

df X%,gs/xg,lo %3.90/%%.05
2 28.43 44.89
4 8.920 10.95
10 3.763 4.057
20 2.524 2.618

Xl (oL >2
xp 90
df X%,gs/xg,lo %3.90/%%.05
50 1.791 1.817
100 1.510 1.521
200 1.400 1.407
500 1.203 1.204
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Test for ¢~

® When the sample size is large, the distribution of In(s) is approximately
normal with p) = In(o) and o) = 1/ J2n .
@® The power by the large sample approximation is:

w = O(—zp <z < )
where

zZg = JEIn(%) — Zq.

® The approximate sample size required to obtain power 7 = 1 — f is:

2
n = .
2<ln(§—é )
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Test for ¢~

Example: What sample size is required to reject H
favor of Hy : 62 > 40 with 7 = 0.90 when ¢? = 1007?

Solution: With Zoos = 1.645 and Zo10 = 1.282:
2

[ 1.645+1.282 | _ o
\ e/

The solution by the exact method gives n = 22.

n:

: 0% =40in
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Test for Two Standard Deviations
@ The hypotheses to be tested are Hy : 67 = o3 versus H

@® The test statistic is
_ (51)?
= <S2 > '

@® The exact power is given by:

: 07 > 03.

n—P(F/;<F<oo)whereFﬂ—< >F1_a.

Accept H Reject Hy ‘
Ho
\4“
2
(N Fo . F=(s1/%)
Ha
B T
0 FB (0/3) F= (Sl/é)2
0 = (0)/0))? 1 F=(s/5) (/a)’
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Test for Two Standard Deviations

@ The distribution of In(s1/s, ) is approximately normal.
@ The large-sample approximate power is:

w = O(—zp <z < o)
where
- ln(%)
\/%( nll T nlz

® When n, = n,, the approximate sample size is:

2
Zog +Zﬁ

niT = Ny = o1 .
hl(g)

Zﬁ — Zg-
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Test for Two Standard Deviations

Example: What sample size is required to reject Hy : ¢ = 10 in favor
of Hy : 0 > 10 with 7 = 0.90 when ¢ = 20?

Solution: With 61/60 = 20/10 = 2, zo05 = 1.645, and Zo10 = 1.282:

2
Za +Zﬁ
ny = ny = In( 2
n(o

2
_ _ [ Z0.05 T Z0.10
"o ( In(2) )

= 18

MINITAB’s Stat> Power and Sample Size> 2 Variances menu
gives n = 20.
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Proportions

® Onec Proportion
m Exact (binomial) method
m y? approximation
m Normal approximations
m Larson’s nomogram
® Two Proportions
Difference
Risk ratio or relative risk
Odds ratio
Fisher’s exact test
McNemar’s test for correlated proportions
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Proportions

@ The distribution of successes (x) in trials (n), when the probability of a
success 1n any trial (p) 1s fixed, follows the binomial model:

b(x;n,p) = (1)p*(1 —p)™™

@ Exact confidence intervals and hypothesis test are performed with the
binomial model but there are many approximations available.

@ If a large-sample approximation gives a sample size that’s large
compared to the population size, use the small-population correction
n

1
1+ 5
where n is the sample size obtained by the large-sample method and »'’
is the corrected sample size.

n' =
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Confidence Interval for One Proportion

@® When p is small, the approximate sample size required to demonstrate
the one-sided upper confidence limit for the population proportion with
the form:

PO<p<py)=1-a
1s given by:
X %—a,Z(XH)
2pU
where X 1s the number of successes 1n the sample.

@ For the special case of P(0 < p < py) = 0.95, without any successes
found 1n the sample, the approximate sample size 1s given by the rule of
three:

n =~

X (2).95,2
2p U

3
Pu’

2
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Confidence Interval for One Proportion

Example: How many units must be inspected without any failures to
be 95% confident that the defective rate is less than 1%?

Solution: The desired confidence interval has the form:
PO <p <0.01)=0.95.

By the rule of three, the sample size must be:

3
=001

~ 300.
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Confidence Interval for One Proportion

® When the sample size is large and 0.1 < p < 0.9, the confidence
interval for p 1s approximately:

Pp-o0<p<p+d)=1-a

where

5:ZMJpﬂ—p)

7
which leads to

AN AN Z(X 2
n=p-p)( 22 )
® Whenp = - anda = 0.05:

1 ( Zo.025
=4\
~ 572,

Mathews Malnar & Bailey, Inc., Sample Size Calculations
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Confidence Interval for One Proportion

Example: How many people must be polled in a close election to
estimate how the election will go with 2% precision and 95%
confidence?

Solution: The desired confidence interval has the form:
P(p—-0.02<p<p+0.02) =0.95.
The sample size must be:
n =~ (0.02)7% = 2500.

Solution using Piface CI for one proportion:

Bcifora proportion Q

Options Help
[ Finite population

v Worst case

Confidence 095 v

Margin of Error o
Value v | 02 f

n

Value ~ | |2401 4.|
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Confidence Interval for One Proportion

Solution using MINITAB Stat> Power and Sample Size> 1

Proportion:

MTE > Power:

AUBC=
AUBC=
AUBC=
AlBC=
AlUBEC=

Fone:
PCompare 0.52:;
Power 0.50;
PHull 0.50;
GPCurve.

Power and Sample Size

Test for One Froportion

Testing p = 0.5 [(versus not = 0.5)
Alpha = 0.05

Jample Target

Comparison p Jize FPower Actual Power

0.5 2401 0.5 0.500053

Power and Sample Size for 1 Proportion

Specify walues For any twa af the Following:

sample sizes: I
Comparison proporkions: | 0.52
Power values: |D.5D

Hvpothesized proportion: 0.50

Options. ..

araph. ..

Help QK

Zance

Mathews Malnar & Bailey, Inc., Sample Size Calculations

90



Confidence Interval for One Proportion

Solution using MINITAB Stat> Power and Sample Size> Sample
Size for Estimation> Proportion (Binomial):

MTB > 302CI:

SUBC: EFroportion 0.50;
SUBC: Confidence 95.0;
SUBC™ IType 0O;

3UBC> MError 0.0Z. A
Sample Size for Estimation E

Sample Size for Estimation
Parameter: Propottion (Binomial)
Method
Flanning Yalue
Parameter Proportion Proportion: |':'-5':I
Distribution Binomial
Froportion u.5 Estimate sample sizes j
Confidence level a5z
Confidence interval Two-sided Margins of error For confidence inkervals: 0.0z
Be=zults Options. ..
Margin Sample Help | QI Cancel
of Error SJize
I 2449
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Proportions In Small Populations

@® When the population is small, attention shifts from the success rate to
the number of successes.

® The hypergeometric distribution governs attribute sampling from small
populations, but there are good approximations to it in most cases.

m The small-sample (n» < N) binomial approximation:
h(x;S,N,n) =~ b(x;n,p = S/N)

- DO )

m The rare-event (S < N) binomial approximation:
h(x;S,N,n) =~ b(x;S,p = n/N)

~(DE)(-%)
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Confidence Interval for One Proportion
(Small Population)

® The one-sided upper (1 — a)100% confidence interval for S is given by
PS<Sy)=zl-a
where Sy 1s the smallest value of § which satisfies

X
Zh(x;SU,N,n) < «.

x=0
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Confidence Interval for One Proportion
(Small Population)

® WhenX=0andn < N:
Su

h(0;Sy,N,n) = b(O;n,p = W)

(-%)

In(a)
n = Su
lfl(l -~ N

This result 1s equivalent to:

which leads to:

2
X l—a,2

n = .
2(%)

Mathews Malnar & Bailey, Inc., Sample Size Calculations
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Confidence Interval for One Proportion
(Small Population)

® WhenX=0and S < N:
h(0;Su,Nym) = b(0;Su,p = £ )

=(-%)"

n > N(1-alv)

which leads to:

or

n > 1 — 1/Sy
= a .
N
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Confidence Interval for One Proportion
(Small Population)

Example: What fraction of a lot must be inspected and found to be
free of defectives to demonstrate,with 95% confidence, that there are
no more than four defectives in the population?

Solution: The goal of the experiment is to demonstrate the
confidence interval

PO <S<4)>0.95

using a zero-successes (X = 0) sampling plan. By the rare-event
approximation,

£> A~ 1/S

N_l o Pv
> 1-0.05"
> (.53
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Test for One Proportion

® The hypotheses to be tested are Hy : p = po versus Hy : p > po.

@® The exact power and sample size are determined by the simultaneous
solution to

2 b(x;n,po) > 1 -a

x=0
D bx;n,pr) < B.
x=0

where c is the acceptance number.

® Use a large-sample approximation to find an approximate solution, then
iterate the equations to find an exact solution.

® Larson’s nomogram is the easiest way to find an approximate solution.
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Test for One Proportion

Example: Find » and ¢ for the sampling plan for defectives that will
accept 95% of lots with 2% defectives and 5% of lots with 9%
defectives. Draw the OC curve for the sampling plan.

Solution:

o tg:O;?" ,@3@
- R .
- ; ‘. .\\\\\\\Q"':","/ % = s
23§ oH w’wf"’ll =
o ) ' \m \ " .y s
100 M ‘“"' ““\\\' ." -100,c=4 0.10
s N\l" ““ s\’w.'. "/ l’l oo &
M\W ! Q\ '{"‘l";l' |
'e,ese;;sw;wssm, ".,'l,:,,'l:,
=31 i H |‘|" »
- N -
AN
I M \ l\“ \\\ o
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Test for One Proportion

Solution (continued):

1
0.9-
0.8
0.7
0.6
0.5+
0.4+
0.3
0.2
0.1+

O I I I I I I
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

Lot Proportion Defective (p)

Probability of Accepting Ho




Test for One Proportion

Solution by MINITAB Stat> Quality Tools> Acceptance Sampling
by Attributes> Create a Sampling Plan:

Operating Characteristic (OC) Curve
Sample Size = 115, Acceptance Number = 5

Acceptance Sampling by Attributes

0_9— Measurement type: Gofno go
Lot ¢quality in proportion defective
Use binomial distribution to calculate probability

of acceptance

Acceptable Quality Level {AQL}) 0.02
Producer's Risk (Alpha) 0.05
Rejectable Quality Level {ROL or LTPD) 0.09
D 5 T Consumer's Risk (Beta) 0.05

Generated Plani{s)

U 3 | Sample Size 115
" Acceptance Humber h

Probability of Acceptance

Accept lot if defective items in 115 =zampled <= 5§,
otherwizse reject.

0.1-

Proportion Probability Prohability

I T T I I I i I Defective Accepting Rejecting
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 02 BOnL 029
0.09 0.047 0.953

Lot Proportion Defective
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Confidence Interval for the Difference
Between Two Proportions

® The two-sided confidence interval for Ap has the form
PAp -0 <Ap<Ap+0)=1-a
where the confidence interval half-width 1s
§ = Zan0 .

® Then the sample size n| required to obtain the desired confidence
interval half-width 0 with sample size ratio n/n; 1s

ny = (Zg/z >2<]91(1 —p1) +pa(l _p2)<%>>'

® Ifp, and p, are expected to be approximately equal so that they can
both be estimated by a nominal value p, then

m = (22 )2(1 + 1L )p(1—p).
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Test for a Difference Between Two Proportions
® The hypotheses to be tested are Hy : p1 = py versus Hy : p1 # p».
@® The power of the test is

T =®(—-0 <z < zp)

where
Ap

Zp = ————— — Zan2
2p(1-p)

and

® The sample size is
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Test for a Difference Between Two Proportions

Example: A biologist wants to test for a difference in the ratio of male
to female frogs between a clean pond and a contaminated pond.
How many frogs must she sample to detect a difference of 10%
between the ponds with 90% power?

Solution: Assuming that normal ratio of male to female frogsis 1 : 1,

with p = 0.5 and Ap = 0.10, the approximate sample size is:

_ 2(0.5)(1-0.5)
(0.10)°

n (1.96 + 1.282)* = 526.
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Test for a Difference Between Two Proportions

Solution by Piface Test Comparing Two Proportions:
Test of equality of two pro... @@@

Qptions Help

pl
Value ~ | 45

P2
Value | .55

nl

Value | 543

n2
Value v b43

v Equal ns

Alpha
Value |05

Power
Value | 8999

L—‘l\_‘ﬂ

v Continuity corr. Alternative pll=p2 +
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Test for a Difference Between Two Proportions

Solution by MINITAB Stat> Power and Sample Size> 2

Proportions:

UTE > Power:
SUBC:> FPTwo;

SUBC: PCompare 0.45;
SUBC> Power 0.90;
SUBC: PBaseline 0.55:;

SUBC: GPCurve.

Power and Sample Size
Test for Two Proportions
Testing comparison p = baseline p (versus not =)

Calculating power for baseline p = 0.55
blpha = 0.05

Jample Target
Compari=on p Zize Power Actual Power
0.45 bz24 o.9 0.900386

The sample size is for each group.

Power and Sample Size for 2 Proportions

Specify walues For any bwo of the Following:

Sample sizes: |

Comparison proportions (plh: |D.45

Power walues: |DSD

Baseline proportion (p2); 0.55

Options...

Graph...

Help (4

Cance
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Poisson Counts

@ The distribution of counts is Poisson:

(nd) e
x!
where x 1s the number of counts observed in area of opportunity zn. The

mean of x 1s u, = nA, where A is the mean x per unit area.

® When the Poisson mean is large, the Poisson distribution is
approximately normal.

@® The distribution of /x is approximately normal with mean u 5 = Jyni
and standard deviation o 5z = % This transformation provides
convenient methods for sample size and power calculations.

Poisson(x;n,A) = forx =0,1,...
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Confidence Interval for the Poisson Mean

@® An approximate large sample confidence interval for the Poisson mean

is
T4 + a
P(x Zn/z,/x << X Zn/z,/x ) 1y

P(2(1-8) <A< A(1+5)) =1-a

where
A=<%andd = zen/Jx.

® The number of events x required to obtain a specified value of § is

given by
¥ — (Za/Z )2
= (=5 .

Mathews Malnar & Bailey, Inc., Sample Size Calculations 108



Confidence Interval for the Poisson Mean

Example: How much junk mail must be accumulated to estimate the
daily rate of junk mail with 10% precision and 95% confidence?

Solution: The desired confidence interval has the form
P(2(1-0.10) < 2 < Z(1 +0.10) ) = 0.95.

The total number of pieces of junk mail required IS

(Zoozs
(l 96

= 385.
After at least that many pieces of junk mail are collected,
1= X
n
where 7 is the number of days, and the confidence limits for A are
UCL/LCL = (1£0.1)2.
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Confidence Interval for the Poisson Mean
Solution: By Piface, x = 100 x 3.83 = 383:

Power of a Simple... Q@®

Options  Help

lambda0 A

Value & | 100 o

alternative larehda |= larhdal

alpha 05

Boundaries of acceptance region

lower = 345 upper = 421
size = .04624

lamhda
V&lue v 90 Ok

n
Value & ||383 QF

power
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Confidence Interval for the Poisson Mean

Solution using MINITAB Stat> Power and Sample Size> Sample
Size for Estimation> Mean Poisson:

MTE > 233CI;

SUBC= FMean 10:

SUBC> Confidence 95.0;
SUEBEC> IType 0O:

SUBC>  MError 1. Sample Size for Estimation E|
Sample Size for Estimation Parameter:  |[GEETRUGIERY
Mo Ehsa Flanning Yalue
Mean: 10
Parameter Hean
Distribution Poisson Estimake sample sizes _IJ
Mean 10
Confidence lewvel 95% Margins of error For confidence intervals: | 1

Confidence interwval Two-s3ided

Dptions...

Help Ik Cancel

Eezult=s

Margin Sample
of Error Zize
1 43

F0 the total number of counts that must bhe accumulated iz 43 x 10 = 430,
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Test for One Poisson Mean

@ The hypotheses to be tested are Hy : A = Ap versus H4 : 4 > Ay.
® The approximate power is

T =®(—=zp <z< o)
where

zp =—2ﬁ<‘/ﬂ.71—‘/70>+za.

@® The number of units that must be inspected to reject Hy with specified
power 1s

n = .
4\ S - S
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Test for One Poisson Mean

Example: How many sampling units must be inspected to reject
Hy : A =10 with 90% power in favorof H4 : A > 10 when A = 157

Solution:
2
n = A ( Z0.05 t+20.10 )
4\ J15 - J10

2
_ 1(1.645+1.282>
4\ J15 - J10
_ 4.24
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Test for One Poisson Mean
Using Piface Generic Poisson Test the sample size must be n = 5.

Power of a Simpl... Q@@

Options  Help
lambda0 -
Value & | 10 ok

alternative larabda = larahdal v

alpha 05

Boundaries of acceptance region

upper = 61

size = .04239
lamhda -
Value w15 ok
- 4]
Value v § o

[i'
power
Value | 9288 oF
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Test for One Poisson Mean
Solution using MINITAB Stat> Power and Sample Size> 1-Sample

Poisson Rate:

MTE > Power:

SUBC> OneRate:;

SUBC> ECompare 15;
SUBC> Fower 0.90;
SUEBC= FNull 10;
SUBC= hlternative 1;
JUEC Alpha 0.05;
SUBC: Length 1.0;
SUBC™ GPCurve.

Power and Sample Size

Test for 1-Sample Poisson REate

Testing rate = 10 ([wversus > 10)
Alpha = 0.05
"Length™ of ohservation = 1

Comparison 3Jample Target

Rate Size Power Actual Power

15 5 .9

0.935674

Sample Size for Estimation

Parameter:  |[GEE AR g

Flanning Yalue

Mean: 10

Estimate sample sizes j

Marains of error for confidence interyvals:

Help

1

Dpkions, ..

Zancel
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Test for Two Poisson Means

@ The hypotheses to be tested are Hy : A1 = Ay versus Hy : A < As.
® The approximate power is

T =®(—-0 <z < zp)

2
_L ni Zq +2Zp
ny = 4<1+n2><m_m>

and n/n, 1s the sample size allocation ratio.
® The optimum allocation ratio is

no_ AL
ny A A,

where
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Linear Regression

® The linear regression model is
vi =bo+b1x;+¢€;
@ The usual goal in linear regression is to estimate the slope, e.g.:
Pbi—o6<pPir<bi+6)=1-a

where
8 = 400,
= lap 86
"\ JSS,
and

SS, = > (x; —Xx)*
i=1

® The confidence interval half-width depends on the pattern of x values.
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Linear Regression

® Ifxisnormal;
A N2
N > ( [a)20 ¢ >
56

@® /[ cvenly spaced, equally weighted levels of x:

A\ 2
N > 12 (ta/zGG > where Ax =

= G-+ 1)\ 0Ax

@ Ifx is uniformly distributed between xmin and Xmax:

A 2
La/20 ¢
> 12
N B ( 6(xmax _xmin) >

/\ 2
[an0 ¢
> 4
N B ( 6(xmax _xmin) >

® L =2levelsofx:

Xmax — Xmin

k—1
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Linear Regression

® Comparison of the total number of observations under different patterns
for the x observations to obtain the same estimation precision for the

slope:
m Three levels of x versus two levels of x:
N three levels of x
N =1.5
two levels of x
m Uniform distribution of x versus two levels of x:
N uniform distribution of x . 3
N two levels of x

® Conclusions:
m Pick the range of x to be as wide as 1s practically possible.
m Concentrate observations at the x extremes

m [falack of fit test 1s required, add observations at the center of the
X range.
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Test for the Regression Slope

@® The hypotheses to be tested are Hy : B = 0 versus H4 : 1 # 0,
where 3 is the regression slope parameter.

® The power to reject Hy is
= P(—o <t < tﬁ)

where
tp = |ﬂ1|(;/€S7&C —lan
and
SS, = No2.

@® The number of observations required to obtain a specified power value
for a given B value 1s the smallest value of N that satisfies

N > (ton +18) (ﬁ = )2.
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Test for the Regression Slope

Example: How many observations are required to reject Hy : 1 =0

in favor of H4 : B, + 0 with 90% power for f; = 10 when o, ~ 2 and
o = 307

Solution: With ¢ ~ z, the first iteration gives

2
N = (zo.025 +Zo.10)2< 1032 5 = 24.

Further iterations indicate that the required sample size is N = 26.
Using Piface Linear Regression:

Options  Help
: |
No. of prediciors F| Error SD
Value 1 ol Value | |30
SD of x[j] 7| Detectable betalj] B
Value |2 ol Value & |10 ok
Sample size A
Value | |26
Alpha 7| Power
Value ~ | 05 ok Value | 9033
v Two-tailed Solve for Saraple size v

Mathews Malnar & Bailey, Inc., Sample Size Calculations 122



Seminar Outline

Review of Fundamental Concepts
Means

Standard Deviations
Proportions

Counts

Linear Regression
Correlation

Designed Experiments
Reliability

10 Statistical Quality Control
11. Resampling Methods

WCoNSoOaRWN=

123



Correlation

@ Pecarson’s correlation coefficient is p, where p = 0 indicates no
correlation, p = 1 indicates perfect positive correlation, and p = —1
indicates perfect negative correlation.

@ The distribution of Fisher’s Z transform given by

Z = tanh™' (7)
_ 1 1 +r
=3 l—r>

1s approximately normal with mean

_ 1. (1tp
’u_'2m(l—p>

and standard deviation
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Confidence Interval for the Correlation Coefficient

@ If numerical values are chosen for the upper and lower confidence
limits of p,

P(LCL, < p< UCL,) =1-aqa,
then the limits may be Z-transformed to obtain
P(ZLCLp < Zp < ZUCLP) =1-a.

® The sample size to obtain the desired confidence interval is

2
Za/2
=4 + 3.
! (ZUCLP —ZicL, )
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Confidence Interval for the Correlation Coefficient

Example: Determine the number of paired observations required to
obtain the following confidence interval for the population correlation:

P(0.9 < p<0.99) =0.95.
Solution: The Fisher’s Z-transformed confidence interval is
P(Z(),g < Zp < Z(),99) =0.95

P(1.472 < Z, < 2.647) = 0.95.

The required sample size is

_ 1.96 2
" 4(2.647— 1472) 3

= 15.

Mathews Malnar & Bailey, Inc., Sample Size Calculations 126



Seminar Outline

Review of Fundamental Concepts
Means
Standard Deviations
Proportions
Counts
Linear Regression
Correlation
Designed Experiments
a. One-way ANOVA
b. Balanced Full Factorial Design with Fixed Effects
c. Fixed Effects in Mixed Models
d. Random Effects in Mixed Models
e. Two-level Factorial Designs
9. Reliability
10. Statistical Quality Control
11. Resampling Methods

ONoOGORWON =

127



One-way ANOVA

® The hypotheses to be tested are Hy : u; = y; for all pairs of 'k
treatments versus H, : pu; # y; for at least one pair of treatments.

@ The test is performed using the F statistic

where the F distribution has vy = k— 1 and v, = k(n — 1) degrees of
freedom.

® The acceptance interval for Hy is
P(O <F<F1_a) =1 -aq.
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One-way ANOVA

@® The power to reject Hy is given by the condition

Fig = Fpy
where the noncentrality parameter is
k
ny .t
¢ _ E(SStreatments) _ =1
EMS,) o
Accept Hy Reject Hyg _
H
B A
0 1 Fl-a F(Ho)
0 FB, o F(Hp)
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One-way ANOVA

® Iftwo treatments are biased symmetrically about the mean:

{4400}

0= 5 (2

@® If one treatment is biased relative to the others:

(o {8 s )

p= 2D (8N

@ The first condition (two treatments biased symmetrically about the
mean) has a smaller noncentrality parameter, 1.e. 1s harder to detect,
than the second condition (one treatment biased with respect to all of
the others) so the first condition 1s the one that’s usually assumed.

then

then
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ANOVA Power and Sample Size Calculations
@® The condition

Fiq = Fpy

can be used to calculate the power for a specified sample size; however,
it cannot be solved explicitly for the sample size as a function of the
power. Sample sizes must be determined by iteration.

® An approximate sample size for ANOVA can be calculated by applying
Bonferroni’s correction to two-sample ¢ tests. This sample size is
conservative but it provides a good starting point for iterations to
determine the exact sample size.
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One-way ANOVA Power

Example: In a one-way classification design with four treatments and
five observations per treatment, determine the power of the ANOVA
to reject H, if the treatment biases from the grand mean are

7; = {18,-6,—6,—6}. The four populations are expected to be normal
and homoscedastic with o, = 8.

Solution: With 6 = 24 in the noncentrality parameter equation for
one treatment biased relative to the others

o= 2D (8 5x3(24) 5395

The F statistic will have dfcamenss = 4—-1 =3 and dfe =4(5-1) = 16
degrees of freedom. The power is 99.5% as determined from

Foos = 3.239 = Fo.005.33.75-
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One-way ANOVA

Solution: With s, = J((lg)2 +3(=6)*)/(4-1) = 12.0:

Title ‘ One-way ANOVA
Model \A
Levels ‘A“
Random factors ‘
¥ Replicated Observations per factor combination 5 |
Study the power of...  Differences/Contrasts [ Ftests!
B One-way ANOVA B@@
Options  Help
A OFmd  Random SD4] " Power[4] -
| |Vt v |12 ok | | Value v\ 995 o
levels[A] = 4 ‘
s - G G ﬁ T | SD[Within] " Significance level s v
Vale v |8
Within " Fixed (¢ Random
. @l
n[Within] = 5
_———1
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One-way ANOVA

Example: Use MINITAB to determine the sample size required for a
one-way classification design with five treatments to be analyzed by
ANOVA. The experiment must resolve a difference of 6 = 200 with
90% power. The five populations are expected to be normal and
homoscedastic with o. = 150. Confirm the value of the power for that

sample size.

Mathews Malnar & Bailey, Inc., Sample Size Calculations 134



One-way ANOVA

Solution: From Stat> Power and Sample Size> One-Way ANOVA.

File Edit Data Calc Stak Graph  Editor  Tools  Window  Help  Assistank
= = 4] E rt 144 Q2H ABREO®EH E g & B E
| =l | 2 ¢

HTE > Power:;
SUBC: Onellay 5;

SUEBC MaxDiff 200; )
ST_TBC::; P:f:e; ;;E?ce Power and Sample Size for One-Way ANOVA @

SUBC> Sicmwsa 150; Murmber of levels: | §

SUBC= GPCurve.

Specify values For any bwo of the Following:

Power and Sample Size

Sample sizes: |
One-way LNOVL Yalues of the maximurn

difference bebween means: | 200
Llpha = 0.05 Assumed standard deviation = 150

Power values: | Q.90

Factors: 1 MNumber of lewvels: 5
Standard dewiation: 150

Maximum 3Samnple Target
Difference Size Power Actusl FPower

200 19 0.9 0.912254
Help | I Zancel

The sample =zize iz for each lewvel.

Options, ., araph...
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One-way ANOVA

Solution: MINITAB indicates that the experiment requires n = 19

observations per treatment group. The model degrees of freedom
will be df .40 = 5 — 1 = 4 and the error degrees of freedom will be
dfe = 5(19 — 1) = 90. The noncentrality parameter (assuming two

treatments biased symmetrically about the mean) is

o= 3(£) - 2 (38) - 108

Then we have:
Fl_a - Fﬁ9¢

Foos = 2.486 = F1689
which is satisfied by g = 0.0877 so the poweris 7 = 0.9123 or 91.2%.
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One-way ANOVA

Solution (continued): Using Calc> Probability Distributions> F:

HMTE > invedf 0.95;
SUBC> £ 4 90.

Inverse Cumulative Distribution Function
F distribution with 4 DIF in numerator and S0 DF in denominator

P X <= x ) b4

0.95 Z.47293

Help

" Probability density

™ Cumulative probabilicy

f» Inwerse cumulative probability

Moncentrality parameter: | o.0

Mumerator degrees of

Denominator degrees of freedom:

" Input column:
Optional starage:
f* Input constant:

Optional storage:

freedom:

o
E
—
—

0.95

li
Ok |

Cancel |

HTE > CDF 2.47293;
SUBC: F 4 90 16.89.

Cumulative Distribution Function
F distribution with 4 DF in numerator and 20 DF in denominator and noncentrality parawmeter 16.59

®x Fi
2.47293

X <=x)
0.0877266

Distribution

Help

" Probability density
(" Cumulative probability

Moncentrality parameter: | 16,89

(" Inverse cumulative probability

P
—
E
—
T

247293

o]

Mumerator degrees of freedom:

Denominator degrees of freedom:

" Input column:
Optional starage:
(+ Input conskant:

Optional storage:

Cancel

X
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Balanced Full Factorial Design with Fixed Effects

Example: A 2 x 3 x 5 full factorial experiment with four replicates is
planned. The experiment will be blocked on replicates and the
ANOVA model will include main effects and two-factor interactions.
Determine the power to detect a difference 6 = 300 units between
two levels of the third study variable if the standard error of the model

IS expected to be o, = 500.
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Balanced Full Factorial Design with Fixed Effects

Solution: If the three study variables are given the names 4, B, and
C and have a = 2, b = 3, and ¢ = 5 levels, respectively, then

dfblocks = 3, de = 1, de = 2, dfc = 4, deB = 2, deC = 4, deC = &, and
dfe = 95. The F distribution noncentrality parameter for C with biases
51 = —150, 52 = 150, and 53 = 54 = 55 =0Is

5
abn)_ 67
. i=1
¢C T G%
 2x3x4x ((-150)% +150% + 0% + 0% + 0?)
N 5002
= 4.32.

The power is determined from
Foos = 2.469 = Fi_z.432,

which is satisfied by 7 = 0.328.
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Balanced Full Factorial Design with Fixed Effects

Solution: Using Piface Balanced ANOVA> Three-way Design with
sc = J(z(lso)z +3(0)2)/(5-1) = 106.1:

Three-way ANOVA

Options  Help
Bl @ Fied (" Random SDIBI = 1 Power[BI] = .05002
i ~ T - .
0 = & & a 1' 1z 1a ] . 2 a 5 a 1
levels[BI] = 4 :
T e reetean
UI é .tli- .IG .IS 1I 12 14 o . > § A B a 1
A (e Fied " Handarn
S‘D[B] =1 Pﬂ}l’er[ﬂ] =.05002
. levels[A] = 2 o | b——r——
& : ; , , - ) , i n a @ @ 10 a 2 . & a 1
Select an ANOVA model =13 ———f——
Options Help | SD[C] = Power[C] B
Buili-in models :_'Three.wfay ANOVLA v B (% Fiwed  Randor |Value v | 106.1 | o | [Value v || 3288 | e
Jevels[E] = 3 SD[A*B] = 1 Power[4*B] = 05001
: : : . ; e e N o o il | ,
. - } " ; ] , e} —— [ — f f . |
Title Three-way ANOVA 0 1 2 3 . LA L A T R RS 0 2 2 < A !
Model [Bl+a+BeCraB+aTCHBT ' G e Phaim SDlA*CI=1 " Power[A*C]= 05001
I | TR T AT L T T
Levels | levels[C] = 5
5 ke ol . SDB*C] =1 Power[B+C] =.05001
Random factors [ 0B e s & 7 I s e e e B — t t t {
: B ) i = 0 = & & a 1 1z 1a Q 2 A 5 a 1
¥ Replicated Observations per factor combination i | - - =
SDRESIDUAL] Significance level o003 w
Study the power of...  Differences/Contrasts Ftests| | Talue v :_SUD |
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Balanced Full Factorial Design with Fixed Effects

Solution: Using MINITAB Stat> Power and Sample Size> General
Full Factorial Design:

MTE > Power;
3UBC> Flesign: F_
SUBC:- MNlevels 2 3 5;
SUBCH Reps 4:

SUBC> MaxDifference 300;

Mumber of levels For each Factor in the model:

SUBC>  Sigma 500; |z3s

SUBC- TOrder Z:;

SURCS FitB: Specify walues For any two of the Following:
SUBC> Alpha 0.05; Replicates: |4

SUBCH GPCurve.

Yalues of the maximum difference | 300

Power and Sample Size between main effect means:

Power values: |

General Full Factorial Design

T P Power and Sample Size for, General Full Factorial - Design gj
Llpha = 0.05 Assuwed standard deviation = 500 el e R el

Factors: 3 Number of levels: 2. 3, & Design. .. Include terms in the model up through order:  |E -
: : 2, 3, S|

Include terms in the model up through order: 2 Options. ..
oK

Include blocks in model.
Help o
Mo i Total Help oK Cancel

Iifference Reps Runs Power
300 4 120 0.328605

¥ Include blocks in model {design blocked on replicates)
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Fixed Effects in Mixed Models

@® For a fixed variable 4, the hypotheses to be tested are Hy : u; = u; for
all pairs of 4 levels versus H4 : u; # p; for at least one pair of 4

levels.
@ The test is performed with the F statistic
MS 4
F —
4T MSew

where MS¢4) 1s the mean square associated with the error for
estimating the A4 effect.
® The power is given by

Fiq = Fpy,

)
¢A _ N Zizl i
a MSE(A)

and N 1s the total number of observations.

where
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Random Effects in Mixed Models

@ The hypotheses to be tested are Hy : 6% = 0 versus Hy : 6% > 0.
@ The F statistic is

MShr
F p—
K7 MSw)

where MSr 1s the ANOVA mean square associated with R and MS¢g)

1s the mean square associated with the error term for testing the R
effect.
@® Under H, : 0% > 0, the distribution of
Fi_
Fp=—"2
R FR

follows the central F’ distribution with dfz numerator and df(r)
denominator degrees of freedom.
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Random Effects in Mixed Models

@ For specified values of the variances required to estimate MSk and
MS ey under H 4, the expected value of Frr 1s

MS'r
E(Fp) = E
(Fr) (MSE(R)>

_ E(MSR)
E(MSr))

and the corresponding power to reject Hy 1s approximately

Fl—a )
T ~P < F < oo .
(E(FR)
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Fixed and Random Effects in Mixed Models

Example: A balanced full factorial experiment is to be performed
using a = 3 levels of a fixed variable 4, b = 5 randomly selected
levels of a random variable B, and n = 4 replicates.

a) Determine the power to reject Hy : a; = 0 for all i when the A-level
biases are a; = {-20,20,0} with o3 = 25, 045 = 0, and o, = 40.
Assume that the 4B interaction term will be included in the ANOVA
even though its expected variance component is O.

b) Determine the power to reject Hy : 63 = 0 when o = 25, 543 = 0,
and o. = 40. Retain the 4B interaction term in the model even though
Its variance component is 0.
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Fixed and Random Effects in Mixed Models

Solution: a) The error mean square used for testing the A4 effect (that
is, the denominator of F) is

MSewy = MSap

A2 A2
= O T NO 45.

The noncentrality parameter is

a

2

Q*

N Zizl !

P4 = MSea)
_ 3x5x4 (-20)* + (20)* + (0)*
3 (40)* + 4(0)?
= 10.

With de =2 and deB = 8,
Foos =4.459 = Fi_r.100
which is satisfied by 7 = 0.640.
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Fixed and Random Effects in Mixed Models

Solution: b) The expected F value is approximately
E(MS5)
E(MS 45)

o2 +no’y + ancy

E(FB) =

2

o2 +noy
(40)% +4(0)* + 3 x 4 x (25)*
(40)* + 4(0)?

~y

~ 5.69.

With dfs = 4 and dfss = 8, the critical F value for the test for the B
effect is Foos4s = 3.838, so the power is approximately

7TZP<% <F<oo)

~ P(0.675 < F < w)
~ (.618.
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Fixed and Random Effects in Mixed Models

Solution: With s, = J((—ZO)2 +(20)2 +(0)*)/3 - 1) = 20:

Title

Nodel

Levels

Randomn factors

¥ Replicaied

:Mixed Model

|#+B+AB

|n3B%

[
I B

Ohservations per facior combination

Study the power of...

4 1

Differerces/Contrasts 1 Ftests]

B Mixed Model
Options Help
A (5 Pied ~ Random SD[A] " Power[a] -
- |'ﬂ'alue w20 ok | [Value » || .64 al
I | o o ] ] o]
} ¥ i B 1
: : : 2' SD[B] Power(B]
|| Value w |25 ok | |Velue v ||.628 | o ||
B Fied @ Random
SD[A*B] " Power[4*B] "
n[B] = 5 N | |[vame v/ [0 ok | [Vahe |05 or |
o 1 2 a S e 7 - 5
SD[Within] Significance level .05 v
Within  ( Fied % Random |Value | |40 for]
n[Within] = 4
5 % & a3 T I s
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Two-Level Factorial Designs

@ There are two goals in two-level factorial designs:
m Detecting signficant effects (ANOVA)
m  Quantifying a regression coefficient (regression)

@ For the purpose of testing for significant effects, use the balanced full
factorial power calculation method. The total number of observations
required can be approximated from

2
n2k ~ 4(ta/2 -I—l‘ﬁ)z( 656 ) .

(Notice that the right hand side is almost constant!)

@® For the purpose of estimating the regression coefficient associated with
a variable, use the linear regression slope method, which gives:

~ N2
1 {020 ¢
>
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Two-Level Factorial Designs

Example: A two-level factorial experiment is limited to 32
experimental runs. Determine the power to detect an effect 6 = o«
using designs with one to five variables and all of the available
resources. Assume that the model will include only main effects and
two-factor interactions.

Solution: The table below shows the exact power as a function of
the number of variables in the experiment.

ko n n2%| =&

116 32 | 0.781
21 8 32 10.779
314 32 0.776
41 2 |32 10.767
501 32 10.757
6 L 32 0.757
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Two-Level Factorial Designs
Solution: For the 23 design with

54 = ‘/((—%)%(%)2)/(2— 1) = 0.707:

Title 2*3 Factorial
Model A+B+C+AB+AC+BC
Levels A2B2C2
Random factors
|V Replicated Observations per factor combination 4
Study the power of... Differences/Contrasts | F fest i

B 2" 3 Factorial Q@@

Options  Help
A Fied " Random SD[4] 7 Power[4] A
Value || 707 Value v |[7758 o
levels[4] = 2 ;
o s 1 s 2 a2 af|SDBI|L Power[B] =.9701 .
o 2 a & & 1 12 1a o 2 4 & a M
B % Fied " Random
SD[C]= 1 . Power[C] = .9701 .
lfvels[l?]=2. . 1 : . o0 2 4 & & T 12 i 0 2 a & a .
o s 1 15 2 25 a
SD[4*B] =1 . Power[A*B] = 7759 ;
C  Fed Random TETEETETY B o EEETS
b2 i) - Secasmel
S EES A o 2 4 & 8 1 12 1a T 5 5 8 1
SD[B*C]=1 Power[B*C] = 7759
Rosidual " Find Rendom e f—— e
0 2 A B a : 12 14 0 2 A B Iﬁ 1
Replications = 4 o
b ' ' ' 1 + | SD[Residual] Significance level 0.0s v
o 1 2 2 4 3 ]
Value ~ | |1 QK
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Two-Level Factorial Designs
Solution: Using MINITAB Stat> Power and Sample Size> 2-Level

Factorial:

MTE > Power:

SUBC=> FFDezsign 3 5:
SUBC=> Feps 4;
3UBC: Effect 1:
3UBC: CPElock 0O;
SUBC=> Sigma 1;
3UBC: Cmit 1;
3UBC: FitC;

3UBC> FitE:;

SUBC™ GPCurve.

Power and Sample Size
Z2-Lewvel Factorial Design
Llpha = 0.05

bAzsumed standard deviation =

Factors: 3
Blocks: none

Base Design: 3, &

MNumber of terms omitted from model: 1

Center Total
Foints Effect EReps Funs= Fower
] 1 4 32 0.775898

1

Power and Sample Size for 2-Level Factorial Design

Mumber of Fackars:

Murnber of corner poinks:

Specify values For any three of the Following:

Replicates: | 4

Effects: | 1

Power values: |

X]

Mumber of center points per block: | 0

Standard deviation: 1
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Two-Level Factorial Designs

Example: How many replicates of a 23 design are required to
determine the regression coefficient for a main effect with precision
o = 300 with 95% confidence when the standard error of the model is
expected to be o, = 6007

Solution: If the error degrees of freedom are sufficiently large that
t0.025 = Zo.025 then

n > 1.96 x 600
a 23 300

With only 2 x 23 = 16 total runs, the #9025 ~ zo.025 assumption is not
satisfied. Another iteration shows that the transcendental sample
size condition is satisfied for n = 3 replicates of the 23 design.
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Two-Level Factorial Designs

Solution: Using MINITAB Stat> Power and Sample Size> 2-level
Factorial Design (Note: MINITAB’s menu is expressed in terms of
the effect size which is two times the value of the regression
coefficient.):

MTE > Power:
SUBC= FFDesign 3 &;

SuBes i Power and Sample Size for 2-Level Factorial Design @
3UBCH FPower 0.5;
SUBCH CPElock O; Murmber of Factars: |37
SUBC™ Sicpma 600;
STRCS Crit 1: Mumnber of corner poinks: lgi
SUBC= FicC:
SUBCH FitE: Specify values For any three of the Following:
SUBC> GPCurve. Replicates; |
Power and Sample Size ity | 600
Power values: |D.5

2z—-Level Factorial Design

Mumber of center points per block; | 0

Standard deviation: | e

Llpha = 0.05 Assumed standard deviation = 600

Factors: 3 Ba=ze Design: 3, 5

Elocks: none
Design, ..

J

INumber of terms omitted from model: 1

Cpkions... | araph... |

Center Total Target Help OK | Cancel |
Points Effect Reps Funs= Power Actual FPower
0 00 3 Z24 .5 0.636714
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Binary Responses in 2* Designs

The observation that the total number of runs is almost invariant with
respect to k in 2* designs with quantitative responses extends to binary
responses.

For a 2* design with a binary response, calculate the total sample size
using the two proportions method and then distribute the observations
uniformly over all of the cells of the 2* design.
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Binary Responses in 2* Designs

Example: Determine the number of replicates required for a 23
design with a binary reponse if the experiment should reject

Hy : p = 0.02 with 90% power when p = 0.05.

Solution: Using MINITAB Stat> Power and Sample Size> 2
Proportions, the number of observations required is n = 787 per
treatment group or 2 x 787 = 1574 in total. There are 2° = 8 cells in
the experiment, so the number of observations per cell should be

1574/8 = 197.
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Seminar Outline

Review of Fundamental Concepts

Means

Standard Deviations

Proportions

Counts

Linear Regression
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Designed Experiments

Reliability
a. Reliability Parameter Estimation
b. Reliability Demonstration Tests
c. Two-sample Reliability Tests

d. Interference

10. Statistical Quality Control

11. Resampling Methods
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How are Reliability/Survival Statistical Methods

Different from Classical Statistical Methods?

® Responses are often, but aren’t limited to, time or number of cycles to
failure

® Some additional distributions: exponential, Weibull, ...
@® Censored observations:
m Right censored - the experiment is suspended before a unit fails
m Left censored - a unit fails before the first time 1t 1s observed
m Interval censored - a unit fails between two observation times
@ Analysis methods: Special methods are required for
m Non-normal error distributions
m Censored observations
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How are Reliability/Survival Statistical Methods

Similar to Classical Statistical Methods?
@ Reliability/Survival methods also involve point estimates, confidence
intervals, and hypothesis tests
@ Reliability/Survival methods also involve issues of distribution
location, variation, and shape
@ Reliability/Survival experiments are also available for one sample,
paired samples, two samples, and many samples
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Sample Sizes for Reliability

@ The estimation precision for reliability parameters is determined
by the number of failures, not by the number of units tested.

® In the methods that follow:
m The symbol z indicates the number of units tested
m The symbol » indicates the number failures

m Easy to use normal approximations will be used instead of the
more accurate but more complicated methods

@® Sample size calculations for reliability problems can be performed for:
m Parameters, e.g. , exponential mean u, Weibull shape p or scale n,

m Percentiles, e.g. the time at which a specified fraction (percent) of

the population fails, e.g. B1, B10, LD50, ...
m Percent/failure fraction/reliability at a specified time
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Confidence Interval for the Exponential MTTF
Under the exponential reliability model the reliability at time ¢ is

R(t;p) = e
where u is the mean time to failure (MTTF). A point estimate for u is

- 1 n
{ = 7_letl-.
=

When r is large an approximate confidence interval for u is given by
Pt(1-6)<u<t(l+6)=1-a

where the confidence interval relative half-width is
Zal2
S =

I
Then the approximate number of failures required to obtain a
specified Cl half-width is
| Za2 2
a ( 5 ) '
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Confidence Interval for the Exponential MTTF

Example: How many units must be tested to failure to determine the
exponential mean life u with 20% precision and 95% confidence?
Solution: The goal of the experiment is to determine a confidence
interval for u of the form

P(1-0)<u<t(l+6)=1-a
With a = 0.05 and 6 = 0.2, the required number of failures is

= 97.
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Confidence Interval for the Exponential MTTF

Solution: Using MINITAB Stat> Reliability/Survival> Test Plans>
Estimation:

@® Specify the exponential distribution

@® MINITAB is referenced by failure, not survival, rates, so ...

@ The desired percentile is u with corresponding percent

1 — e‘””|t:u =1-e! =0.632.
® Specify the confidence interval half-width.
® Average the sample sizes for the lower and upper bounds solutions.
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MTE > Etestplan:

SUBC> EPtile 83.3;
SUBCH Dlower 20;
SUBCH Exponential;
SUBCH Sclocation 100;
SUBCH TwoZided.

Estimation Test Plans

Tncensored data

Estimated parameter: 63.3th percentile
Calculated planning estimate = 100.239
Target Confidence Lewvel = 95%

Precision in terwms of the lower hound of a two-sided confidence interval.

Planning distribution: Exponential

Socale 100
Aotual
Sample Confidence
Precision Jize Level

zo 78 95.0641

MTE » Etestplan;

SUBC> EPtile 63.3;
SUBC:> Dupper 20;
SUEBCH Exponential;
SUBCH SGocLocation 100;
SUBC> TwoSided.

Estimation Test Plans

Patameter ko be Estimated
(* Percentile For percent: 63,5

(™ Reliability at time:
Precisions as distances from bound of CI ko estimate:

Lovier bound ﬂ |20

Assurned distribution: |Expgnentia| j

Specify planning values For two of the Following:

Shape {Weibull) or scale {other distributions): ,7
Scale (Weibull or expo) or location {other dists): 100
Percentile: ’7 ’7

Percentile: [ [

Right Cens...
Interval Cens...

Options...

——

Estimation Test Plans

Tncensored data

Help Cancel
Estimation Test Plans §|
Parameter ko be Estimated Right Cens. ..

(*" Percentile for percent: 63,3
(" Reliability at time:
Precisions as distances from bound of CI to estimate:

Upper bound ﬂ |2El

Interval Cens. ..

Estimated parameter: 63.3th percentile
Calculated planning estimate = 100.239
Target Confidence Lewvel = 95%

Precision in terms of the upper bound of a two-sided confidence interwval.

Assumed distribution: |Expgnentia|

Specify planning values Far two of the Following:
Shape {Weibull) or scale {other distributions):

Scale (Weibull or expa) or location {other dists):

Planning distribution: Exponential

[
—

100

Percentile:

Socale 100
hAotual
Sample Confidence
Precision Jize Level
20 117 Q5.09029

Piercentile:
Help

=]

Options...

Cancel
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Confidence Interval for an Exponential Percentile

The sample size calculation for the confidence interval for the
exponential mean also applies to all other percentiles.

Example: How many units must be tested to failure to determine,
with 20% precision and 95% confidence, any failure percentile under
the assumption that the reliability distribution is exponential?
Solution: The goal of the experiment is to determine a 95%
confidence interval for the 100/" failure percentile ¢, of the form

P(T(1-8) <tr<7(1+35)) = 0.95
where
tr=—tIn(1 - f).
With ¢ = 0.05 and 6 = 0.2, the required number of failures is

- (%)

= 97.
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Confidence Interval for an Exponential Reliability

An approximate large-sample (1 — «¢)100% confidence interval for the
exponential reliability R(#; i) Is

P(ﬁu—(s) <R <ﬁ(1+5)) —1-a

where the confidence interval’s relative half-width is

Zal2 ln(ﬁ)
5 =— .
Jr

Then the number of failures r required to obtain a specified
confidence interval half-width is

A 2
Zal2 In (R)

)
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Confidence Interval for an Exponential Reliability

Example: How many units must be tested to failure in an experiment
to determine, with 95% confidence, the exponential reliability to
within 10% of its true value if the expected reliability is 80%?

Solution: With ¢ = 0.05, 6 = 0.10, and R=0 80, the required
number of failures is
~ 2
Za/2 hl(R)

0

[ 1.961n(0.80) \*
N 0.10

= 20.
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Confidence Interval for the Weibull Scale Parameter
The Weibull reliability at time ¢ is given by
R(t;n, B) = e~@m"

where 1 is the scale factor and g is the shape factor. When g is
known but n is not, which is often the case, then after the variable
transformations ¢ = ## and n' = n? the Weibull distribution is
transformed into the exponential distribution and the results from that
method apply. This leads to the the approximate confidence interval
for the scale parameter

POH(1-0)<n<n(1+9))=1-«

where the confidence interval’s relative half-width is
Zq/2
S =

BJr

Then the number of failures required to obtain specified relative

precision ¢ Is
- Zal2 2
po )
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Confidence Interval for the Weibull Scale Parameter

Example: How many units must be tested to failure to estimate, with
20% precision and 95% confidence, the Weibull scale factor if the
shape factor is known to be f = 27?

Solution: The goal of the experiment is to obtain a confidence
interval for the Weibull scale factor with 6 = 0.20 and a = 0.05. The
required number of failures is

(%)

:< 1.96  \?
2x0.20

= 23.
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Confidence Interval for the Weibull Shape Parameter

A (1 — a)100% confidence interval for the Weibull shape parameter 8
Is required of the form

P(B(1-8) <B<P+8)) =1-a

where ¢ is the relative precision of the  estimate given by

_ Zarn |6
oz 5

Then the number of failures required to obtain a specified relative
precision for the § estimate is

r=o(%5)
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Confidence Interval for the Weibull Shape Parameter
Example: How many units must be tested to failure to estimate, with
95% confidence, the Weibull shape parameter to within 20% of its
true value?

Solution: The goal of the experiment is to produce a 95%
confidence interval for g with relative half-width 6 = 0.20. With

a = 0.05, the required number of failures is

e

_ 1.96 \?
B 6<7r x 0.20

= 59.

171



Confidence Interval for a Weibull Percentile

Just as the confidence interval for the exponential reliability mean u
IS a special case of the confidence interval for the failure percentile,
the confidence interval for the Weibull scale parameter n is a special
case of the confidence interval for the Weibull failure percentile.

When the Welbull shape parameter g is known but the scale
parameter n is unknown, which is often the case, an approximate
confidence interval for the 100/ failure percentile ¢/ is

P(,l:f(l —0) < Ir < ,l:f(l +0))=1-«

where
5 _ ZO!/Z

N
This is the same confidence interval half-width as was obtained for
the Weibull scale parameter.
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Confidence Interval for a Weibull Reliability

When the number of failures r is large, an approximate confidence
interval for the Weibull reliability has the form

P(ﬁu _a) <R <R( +5)) —1-a
where the confidence interval half-width is
S — Za/2 (1/—\/&)
Jr\U R

Then the number of failures required to determine the reliability with
relative precision 6 Is

~ 2

_( za 1—R>>

r o= — .
(5 < R
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Confidence Interval for a Weibull Reliability

Example: How many units must be tested to failure to determine the
Weibull reliability with 5% precision and 95% confidence at a time
when the reliability is expected to be 90%?

Solution: The required number of failures is

A 2
. Za/2 l—R>>
]/'_
( 0 ( R

(1)96 1—09))
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Reliability Demonstration Tests

A reliability demonstration test is performed by putting » units on test
for time ¢ and observing the number of failures that occur within that
time, i.e. the test is time-terminated. In order to demonstrate that the

exponential mean life u exceeds a specified value u( with confidence
1 —a, that is:

Plup<u<ow)=1-a
the test parameters must meet the condition:
b(c =ryn,p) < a

where b(c;n,p) is the cumulative binomial distribution and the
probability of failure at time ¢ is

p=1-R{tpu) =1-e"
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Demonstration Test

Example: Determine the number of units that must be put on test for
200 hours without any failures to show that the MTTF of a system
exceeds 400 hours with 95% confidence. Assume that the life
distribution is exponential and that the test is time terminated.
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Solution: The goal of the experiment is to determine the value of »
with » = 0 failures in t = 200 hours of testing such that:

P(400 < u < ) = 0.95
With uo = 400 the ¢t = 200 hour reliability is:

200

R(t = 200; 1o = 400) = e 40 = 0.6065

so the probability that a unit will fail before 200 hours is
p=1-0.6065 = 0.3935. With » = 0 and a = 0.05 the smallest value
of n that meets the condition:

b(0;n,0.3935) < 0.05
IS n = 6 since:
b(0;6,0.3935) = 0.04977
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Using MINITAB Stat> Reliability/Survival> Test Plans>

Demonstration:

MTE > DtestPlan 0O:

SUBC> MTTF 400 ;
SUBCH TTime 200 :
SUBC> Exponential;
SUBCH GPOPGraph.

Demonstration Test Plans

Felishility Test Plan
Distribution: Exponential

HTTF Goal = 400, Target Confidence Lewvel = 95%
Aetual
Failure Testing Sample Confidence
Test Time Size Lewvel
o 200 & 95,0213

Demonstration Test Plans

Mimirmurm Yalue to be Demonstrated
("~ scale (weibull or expo) or location (other dists):

Ii
(" Percentile:
(" Reliability:

* MTTF: 400

Maximum number of Failures allowed:

Co—

" Sample sizes: |

{* Testing times For each unit: | =00

Distribution Assumptions
|E:<|:u:nnentia| ﬂ
Shape (Weibull) or scale {other distributions):

Distribution:

Help

Options. ..

]

ancel

3
Graphs. .. |
[
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Demonstration Test

Example: Determine the number of units that must be put on test for
10000 hours without any failures to demonstrate 90% reliability at
12000 hours with 95% confidence. Assume that the life distribution is
Weibull with g = 2.2.
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Solution: Following Mathews, Sample Size Calculations, p. 206,
Example 9.18: The goal of the experiment is to demonstrate 90%
reliability at o = 12000 hours with 95% confidence or

P(12000 < fo10 < OO) = 0.95

The units to be put on test will be operated for ¢ = 10000 hours and
then the test will be suspended.

From Table 9.2 with /o = 0.10and g = 2.2

f=1==fo)
=1- (] —0 10)(10000/12000)2-2

= 0.0681
The number of units that must be tested must satisfy the condition
b(r =0;n,f) <a
b(r = 0;n,0.0681) < 0.05
which gives n = 43.
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Using MINITAB Stat> Reliability/Survival> Test Plans>

Demonstration:

MTE > DtestPlan 0O;

SUBC: Beliakhility 0.90;
SUBC:> Timwe 1z000 ;
SUBC> TTimwe 10000 ;
SUBC:> Weibull:

SUBC- shi3cale 2.2:
SUBC: GPOPGraph.

Demonstration Test Plans

Feliability Test Plan

Distribution: Weibull, Shape =
Feliability Goal = 0.9, Target Confidence Lewvel

Failure Testing Sample Confidence

Test Time Jize

] 10aaa 43 95.1354

Demonstration Test Plans

Minimurn Yalue ko be Dermonstrated

" Scale (weibull or expo) or location (other disks):

" Percentile: li Ii
f# Reliability: | 000 Tirne:; W
A EO

Mazimum number of Failures allowed: ID—

™ Sample sizes; |

{+ Testing times for each unit: | 10000

Distribution Assumpkions
Distribution; |WEibuII j

Shape (Weibull) or scale (okher distributions); | 2.2

Help |

X]
Graphs. ..
EirE|

Opkions. ..

|

Cancel
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Two-Sample Reliablity Tests

® Two-sample reliability tests are used to test for differences between
two mdependent reliability distributions.

@ Such tests may be performed for reliability parameters, percentiles, and
survival rates at a specified endpoint.

@ The log-rank test is a popular two-sample reliability test for a
difference in the survival rates between two treatment groups.
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Two-Sample Log-Rank Test

The hypotheses to be tested are Hy : /41(¢) = ho(¢) versus

Hy : hi(¢t) > hy(t) where h1(¢) and &, (¢) are the time-dependent
hazard rates

The hazard ratio /,(¢)/h(¢) must be constant with respect to time, i.e.
must meet the proportional hazards assumption.

The log-rank test hypotheses are usually redefined in terms of the
log-hazard ratio, », which is estimated from survival probabilities s (¢)
and s, (¢) at any common time ¢ under the proportional hazards
assumption

_ Ins(0))
In(s1(2))

The log-hazard ratio is usually determined from the end-of-test ( = ¢')
survival probabilities.

The log-rank test hypotheses may be rewritten as Hy : » = 1 versus
Hy : r < 1 where H, 1s constructed to reject Hy when the treatment

group’s survival rate 1s significantly greater than the control group’s
survival rate.
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Two-Sample Log-Rank Test

Two popular methods for calculating power and sample size are
presented for the log-rank test:

@® Schoenfeld’s method

@® Lachin’s method
The two methods give nearly identical results for the
equal-sample-size case but diverge slightly when the sample sizes

are not equal. Lachin’s method is preferred in the
unequal-sample-size case because it is more conservative.
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Two-Sample Log-Rank Test

The sample sizes requiredtoreject Hy : r =1versus Hy : r < 1
when » = r, with power = = 1 —  is given by:
@® Schoenfeld’s method:

o (zat+zp )’ 1 1
e ( In(rs) ) (1—sl<t'> T 1—S2<t'>>

® [achin’s method:

o (za +2p)° (1+rA )2
nyp = nz = / /
2—s51() —s2(t') \ 1 —=ry4

185



Two-Sample Log-Rank Test

Example: Determine how many units must be included in a study to
compare the survival rates of two treatments using the log-rank test if
the control treatment is expected to have about 20% survivors at the
end of the study and the study should have 90% power to reject H, if
the experimental treatment has 40% survivors at the end of the
study. Assume that the hazard rates are proportional and that the
sample sizes will be equal.

Solution: From the expected end-of-study conditions under H, the
log-hazard ratio is estimated to be

In(0.40)
4= 020y~ 5693
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Two-Sample Log-Rank Test

Solution(continued): The required sample size by Schoenfeld’s

method is
2
n:(za+zﬁ> ] _ ] /
In(74) 1 —s1(2) 1 —5,(8)

_( Z0.05 *+ Z0.10 2( 11 )
In(0.5693) 1-0.2 1-0.4
=79
and by Lachin’s method is

n = (Za+Z,B)2 (l-i—I"A )2
2—s51(t) —s2(t'") \ 1 —ry4

_ (1.645+1.282)2<1+0.5693 2
2-0.2-0.4 \1-0.5693

= 82
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Interference

® Interference failures occur when a quality characteristic exceeds a limit
where both the quality characteristic and the limit are statistically
distributed.

® The figure shows a strength—load interference situation:
0 150 450 600

S-L S
f

Ay _

-100 0 100 200 300 400 500 600 700 800
Strength and Load Units

Distributions of strength, load, and their difference.
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Interference

@ Ifstrength and load values are indicated with the symbol x, and if their
probability density functions are given by S(x) and L(x), respectively,
then the probability of interference failure 1s given by

/= I S(XS)<IL(XL)dXL>de.

The necessary integrations may be performed to solve for the failure
probability when S(x) and L(x) are well defined; however, in many
situations the actual interference analysis is performed by resampling
from sample strength and load data.

@® Sece Mathews for treatment of the normal-normal,
exponential-exponential, and Weibull-Weibull interference failure
sample size calculations.
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Weibull-Weibull Interference

When the strength and load are both Weibull-distributed the
approximate strength/load interference failure rate (f) is given by

( )/35 (1+ )

where I'( ) is the gamma function. The approximation is satisfied

when
ﬂs
() <

which corresponds to small /- the usual condition of interest.
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Weibull-Weibull Interference

Under the assumption that ; and s are known, for large samples,
the approximate one-sided upper confidence limit for fis given by

cD(O<f<?U> ~1-a

where ]A‘U = ]A‘(l +0) where

S = ZaPs J L, 1
F(l + %) nifi  nsPs
For a specified value of the relative precision of the estimate ¢ in the

equal-sample-size case (n; = ns = n), this equation can be solved
for the sample size to obtain

(= B
”<5r<1+%>> (-5 )
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Example: How many measurements of mating components in a
device must be taken to demonstrate, with 95% confidence, that their
true interference failure rate does not exceed the observed failure
rate by 20% if the two distributions are known to be Weibull with
Bs=2.5and B, = 1.57?

Solution: The goal of the experiment is to acquire sufficient
information to demonstrate the following one-sided upper confidence
interval for the interference failure rate f:

P(0 <f<f(1+0.2)) = 0.95.

With 6 = 0.2 and a = 0.05 we obtain the sample size

2
Zo ﬂ%)
_ 1+ ES
! (MO+%>><+ﬁ%
2
_ 1,645 2.52
) <0.2><F(1+%)> (1 35)

= 113.
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Seminar Outline

1. Review of Fundamental Concepts
2. Means
3. Standard Deviations
4. Proportions
5. Counts
6. Linear Regression
7. Correlation
8. Designed Experiments
9. Reliability
10. Statistical Quality Control
a. SPC Charts
b. Process Capability
c. Tolerance Intervals
d. Acceptance Sampling
e. Gage Error Studies
11. Resampling Methods
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SPC Charts and Hypothesis Testing

Shewhart's SPC charts provide a graphical hypothesis test of
Hy : u = CL (the process is in control) versus H,4 : u + CL (the

process is out of control):

Xbar Chart

150

Reject HO
140
UCL=136.27

A w/\/\vﬂ v\/\ww terzen

110 I Reject

-
w
o

Sample Mean

-
N
o

LCL=115.81

HO

100
1 5 9 13 17 21 25 29 33 37

Sample Number

Mathews Malnar & Bailey, Inc., Sample Size Calculations 194



Type 1 and Type 2 Errors in SPC Charts

UCL

CL

LCL

HO is true

HO is false

Correct decision

Correct decision
}%

?\

e

p——

@)

AN

Type 1 error

Type 2 error

Time

195



Type 1 and Type 2 Errors in SPC Charts

HO is true HO is false

Type 1 error rate  Power

UCL

CL

LCL

Type 2 error rate

Time
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SPC Run Rule Power

A run rule’s power (its probability of detecting a shift in location) can
be calculated as a function of the size of the shift.

Accept

Ho -
- - Feject

Feject

i

B

P

v

LCL o UCL
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SPC Run Rule Power

For the rule that the process is declared to be out of control if a
single point falls beyond the usual 3o contol limits applied to an x
chart the rule’s operating characteristic (OC) curve is given by

O(LCL < X < UCL;p1 # lo,0z) = B

10 ]
I R U O
R N S N s
07 - WA NN N N

Pa oo - N

e R & i N S N il S
7R O R 1 WA VA N AU, S A S S SRS S
! ! \ 43 ! ! : ! ! !
03 -4 bt - NN Rl AR EEEED
02 —- -4 AR A NG e e N e
04— BN -\ NI

00 —-
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SPC Chart Run Rules

SPC charts are usually operated with several run rules:

TEST 1: One point beyond 3 o TEST 2: 9 points to one side of CL

3 - — e — 3 — ——_———,—— e — e ———— - —— —
IR i i i 2 m e e e e e m e e e e e e e e - — - - -
e —— — — B — — — - P ——————— — — -
0 0

B {_jgi__ S e U

2 e - - - e e - - e e e e - - e e e e m - - - - - 0 QO U U U U U U

F ep— e e — - - — - — - — - — -

promognnorrre
TR oo Sesg -

3 —t——,——— e —_ e —_ — e ——_ ——— —— ——

e e 2 U
1 —— J— _—— — —_— —_— —_——_—— =
0

o
o —— — ——— —_— _——
S P - -----

3 e—— e — e — e —_ . —— e — . —— -

e rpe s
,__%__ _________

S SO — U gy A I U U U

3 e— - —— - - ——— = —— - = —— - — - ——

5 10 15
Created by: Rebecca Malnar 9/12/99
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Design of SPC Chart Run Rules

Good SPC chart run rules must meet the following conditions:

1. A rule must be easy to recognize on the chart
2. A rule must have a low false alarm / type 1 error rate
3. A rule must have a low missed alarm / type 2 error rate

Example: Evaluate the run rule: If at least four of five consecutive
points fall beyond 1o to the same side of the center line then the
process is out of control. (This is one of the Western Electric rules.)
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Solution: This pattern is easy to recognize on the chart so the first
condition is met.

For the second condition, if the process is in control then the
probability that any one point falls beyond 1c of the centerline is:

d(1 <z < o) =0.16

Then the probability that at least four of five points fall beyond 1o of
the centerline is:

b(4 < x < 5;5,0.16) = 0.0029

Since this pattern can show up on either side of the chart we have
a = 2(0.0029) = 0.0058 which is acceptably low.

0.16

UCL — \\[

Statistic

CL —

. /

Process
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For the third condition, suppose the process shifts so the new
process mean falls right on a control limit. Then the probability of a
single point falling beyond 1o of the center line is given by:

D(-2 <z < ®) = 0.9772

The probability that at least four of five consecutive points fall beyond
1o of the center line is then:

b(4 <x <5;5,0.9772) = 0.9950
This means that the probability of detecting the shift using this rule is
about 1 — f = 0.9950.

This rule meets all three conditions so it is a good run rule.
N 0.9772
=

UCL —

I ——————

Statistic
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np and p Chart Sample Size

Rules for determining sample size for np and p charts:
1. Toobtain LCL > 0:

n > 9(1p—l9)

2. To detect a shift of the fraction defective from p to p + 6 with 50%
probability use:

or(1 —p)
n = 52
3. To limit the frequency of zero defectives on the chart to less than
5% use:
n 2> %
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Special Run Rule

The n = 3/p sample size criterion is often paired with a special run
rule: The process is out of control if two consecutive zeros occur on
the chart. This is a good rule because it meets all of the requirements
of a good run rule:

@ It is easy to recognize

@ Its type 1 error rate is reasonable (o = 0.05% = 0.0025)

@ The rule turns on hard when the process goes out of control low
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¢ Chart Sample Size

1. To obtain a zero or positive lower control limit use a sampling
unit that is large enough so that ¢ > 9.

2. To detect a shift of the mean defect rate from ¢ to ¢ + 6 with 50%
probability use a sampling unit that is large enough so that
c > 5%/9.

3. To limit the number of occurrences of zero defectives on the
chart to less than 5% use:

c>3

This sample size criterion is often used with a special run rule:
the process is out of control if two consecutive zeros occur on
the chart.
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Multlple Testing Errors in SPC

SPC is a prime example of an opportunity to suffer from excessive type
1 / false alarm errors caused by multiple testing from keeping too many
run rules on too many charts.

Each run rule has its own false alarm / type 1 error rate.

The run rules are not strictly independent of each other but their errors
are roughly additive.

@ The error rates from several charts are roughly additive.

Mathews Malnar & Bailey, Inc., Sample Size Calculations 206



Multiple Testing Errors in SPC

Example: Suppose that four control chart run rules, each with false
alarm / type 1 error rate of about 0.5%, are applied to four control
charts. What is the overall false alarm / type 1 error rate for the family
of rules and charts?

Solution:

Qramily = D, D, O

i=chart j=rule

~ 4 x4 x0.005

~ (.08

That is, we can expect one false alarm / type 1 error to appear at, on
average, in about every 1/0.08 = 12 sampling intervals. This rate
might be acceptable if we're sampling hourly; however, we must be
very careful if we intend to sample more frequently or plan to use
more run rules and/or keep more charts.
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Process Capability

® Quality engineers use two process capability parameters:

. _ USL—LSL
P 60
INSL — p]
Cpk = 30

® (, and ¢, are surrogates for the fraction defective assuming that the
process is normally distributed:.

l1—p=®LSL <x < USL;u,0)
= O(6¢) —3cpr < z < 3cpr)

® Small changes in the values of ¢, and ¢, can cause huge changes in

fractions defective
@® There’s LOTS of bad practice out there because quality engineers don’t
realize how much data is required to estimate ¢, and c .
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Process Capability

® A large-sample confidence interval for ¢, is
P(c,(1-90)<cp<cp(l+6))=1-a

where
5 — ZO!/Z

R

@ The sample size to obtain confidence interval half-width ¢ is

()
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Process Capability

Example: Calculate the sample size required to estimate the
process capability parameter ¢, to within £10% with 95% confidence.

Solution: With relative confidence interval half-width 6§ = 0.10 and
(1 —a)100% = 95% confidence the required sample size is:

1/71.96\% _
”‘2(0.10 = 193

Note that knowing ¢, to within £10% still covers a huge, possibly
unacceptably wide, range of fraction defective. For example, if the
95% confidence interval for ¢, is 1.5 £ 0. 15 the ratio of the fraction

defectives when ¢, = 1.65to ¢, = 1.35 is 64!
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Process Capability

® A large-sample confidence interval for ¢, is
P(Epk(l —5) < Cpk < Epk(l +5)) =1-aq,

1 1 1
O = Zup ( — +—> .
Jn 96’]29k 2

® The sample size to obtain confidence interval half-width 6 is

0~ (Za/2 <9Cpk )

When c, 1s very large, this reduces to the sample size required for
estimating c,,.

where
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Process Capability

Example: What sample size is required to estimate ¢, to within 5%
of its true value with 90% confidence if ¢, = 1.0 is expected?
Solution: With 6 = 0.05 and a = 0.05 the required sample size is

_ (1.645Y? 1 1)
n = ( LGk (9(1.0)2 i 2) 662.
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Tolerance Intervals

There are two tolerance interval methods available:

@® Normal distribution tolerance interval
@® Nonparametric tolerance interval
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Normal Distribution Tolerance Interval

@ If the quality characteristic is normally distributed with known mean
and standard deviation then the specifiction limits would be

USL/LSL = utzy,no

where p 1s the allowed fraction defective.

@® When 1 and o must be estimated from sample data, it is necessary to
incorporate the confidence intervals for u and o into the specification
limit calculation. The result 1s the normal distribution tolerance
interval:

m For a two-sided specification:
LSL/USL = X £ ks

where kr, = f(p,a,n).
m One-sided specification:

LSL = )_C—le
USL = )_C-i—le
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Tolerance Interval Factors for Normal Distributions
(95% Confidence)

Two-sided (k3 )

10
15
20
25
30
40
50

One-sided (k1)

Yield
0.99 0.999
3.98 5.20
3.92 4.61
3.29 4.32
3.16 4.14
3.06 4.02
2.94 3.87
2.86 3.77

Yield
0.99 0.999
4.43 5.65
3.88 4.95
3.62 4.61
3.46 4.41
3.35 4.28
3.21 4.10
3.13 3.99
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Normal Distribution Tolerance Interval

Example: What are the two-sided, 99.9% vyield, 95% confidence
normal distribution tolerance limits for a random sample of size

n =407

Solution: From the table with n = 40, 99.9% yield, we have
kr = 4.10, so the tolerance limits are:

USL/LSL = xt4.1s

For specification limits set this way, we can be 95% confident that
99.9% of the population will fall in spec.
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Example: What sample size is required to set two-sided, 99.9%
yield, 95% confidence normal distribution tolerance limits at
USL/LSL = x + 4s7?

Solution: From the %, table for 99.9% yield the required sample size
Is n = 50.

Note that this method of setting the tolerance limits does not take into
account variation in future production. If typical process control
methods are used to monitor the process, then shifts in the mean of
about 1o will be expected before the shift is identified and corrected,
so the tolerance limits might be padded by approximately 1o to
protect against such shifts giving:

USL/LSL

xx@+1)s
5s

I
=l
-+
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Nonparametric Tolerance Interval

® When we don’t know the distribution shape we can set nonparametric
tolerance limits equal to the minimum and maximum observed values
in a sufficiently large sample to have 100(1 — )% confidence that the
defective rate is less than 100p %; that 1s:

PP(Xmin <X <Xmax) > (1 —pyv)) =1-a
® The required sample size is given by

~ %%—a,4
2p U
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Nonparametric Tolerance Interval

Example: What sample size is required to be 95% confident that at
least 99% of a population of continuous measurement values falls
within the extreme values of the sample?

Solution: With a = 0.05 and py = 0.01, the required sample size is

0~ %3.95,4
- 2x0.01

~ 475.
That is, draw and measure a random sample of n = 475 units. Set
the specification limits to
(LSL < x < USL) = (Xmin < X < Xmax )

and 99% of the population should fall within those limits with 95%
confidence.
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Acceptance Sampling by Attributes

(From Mathews, Sample Size Calculations, p. 80) Given two points
on an operating characteristic (OC) curve corresponding to an
Acceptable Quality Level (40L) condition and a Rejectable Quality
Level (ROL) condition:

PA(p() ZAQL) =1]1-«
P4(p1 = ROL) = P,

the sample size required to satisfy both conditions is

o (Za/zJPO(l ~po) +zpp1(1=p1) )2

P1—po
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Acceptance Sampling by Attributes

Example: Determine the sample size for the attributes sampling plan
that will accept 95% of the lots with 0.1% defectives and reject 95%
of the lots with 0.4% defectives.

Solution: The two specified points on the OC curve are
(po =0.001,P4 =1—a =0.95)and (p; = 0.004,P,, = B = 0.005) so
the sample size is

o (za/zJpou —po) +zpp1(1—p1) )2

P1—Po

1.645J0.001(0.999) + 1.645J0.004(0.996) ’
B 0.004 —0.001

= 2698
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Using MINITAB Stat> Quality Tools> Acceptance Sampling by

Attributes

Acceptance Sampling by

Measurement type: Go/no
Lot guality in proportio

Attributes

oo
n defective

Use binomial distribution to calculate probability of acceptance

Aoceptable Quality Lewvel
Producer's Risk (ilpha)

Rejectable Quality Lewvel

Consumer's Risk (Beta)

Generated Plan(s)

Sample Size 2958
Aoceptance Mumber &

Aocept 1ot if defective

Proportion Probability

Iefective Lecepting
o.0o01 0.9659
O.004 o.0os0

[LQL)

{ROL or LTPD]

001
.05

L0044
.05

items in 2958 sampled <= 6; Otherwise reject.

Probability
Rejecting
0.031

0.950

Acceptance Sampling by Attributes

Create a Sampling Plan

Measurement Eype: |Go } no go (defective)

Units For quality lewvels: |Pr0p0rti0n defective

Acceptable quality level (AGLY:

Rejectable quality level (RQL or LTPD):

Producer's risk {Alpha):

Consurnet's risk (Beta):

Lat size:

Help

| 0.001

| 0.004

|0.05

|0.05

Graphs. ..

oK,
Cancel

3
Qptions, ..
_gehe.. |
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Acceptance Sampling by Variables

An acceptance sampling plan for variable/measurement data can be

used to control the fraction defective relative to specification limits on
the variable/measurement response. The decision to accept or reject
lots is based on the sample mean x and either the known value of the
population standard deviation o or the sample standard deviation s.

x|
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Acceptance Sampling by Variables
Given the AQOL and RQOL conditions:

PA(p() IAQL) =1-a
P4s(p1 =ROL) = p

® When the population standard deviation is known the required sample
size 1s (From Mathews, Sample Size Calculations, p. 252, Equation

10.79)
+Zp
= (Zpo o )

@® When the population standard dev1at10n 1s unknown the required
sample size 1s (From Schilling, Acceptance Sampling in Quality

Control)
K a +Z /3
(1 i ) ( Zpo — )

Zplza +ZpOZﬁ
Za +Zﬂ

where

k=
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Acceptance Sampling by Variables

Example: Determine the sample size for the variables sampling plan
that will accept 95% of the lots with 0.1% defectives and reject 95%
of the lots with 0.4% defectives. Assume that o is known.

Solution: The sample size is given by
_( ZatzZp \?
"= (Zpo —Zp;

_ ( 1.645 + 1.645 \*
3.09 —2.652

= 57
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Using MINITAB Stat> Quality Tools> Acceptance Sampling by

Variables
Acceptance Sampling by Variables - Create/Compare

Lot guality in proportion defectiwve

Upper 3pecification Limit (U3L) 10
Historical 3tandard Dewviation 1
Acceptable Quality Lewvel (AQL) 0.001
Producer's Risk (Alpha) 0.05

Fejectakble Ouality Lewvel (REOL or LTFD) 0.004
Consumer's Risk [(Beta) 0.05
Generated Plan (=)

Sanple Size 57
Critical Distance [k Value) 2.87115

Z.USL = (upper sSpec - mean)/historical standard deviation
Aceept lot if Z2.03L »>= k:; otherwise reject.

Proportion Probability Probability

Defective bocepting Fejecting
0.001 0.951 0.049
0.004 0.04%8 0.951

Acceptance Sampling by Variables [CreatefCompare)

Lnits For quality levels: |F‘r|:||:u:|rti0n defective

Acceptable quality level (AQLY:
Rejectable quality level (ROL or LTPD:

Producer's risk {Alpha):

Consumer's risk (Betal):

Lowwer spec:
Uppet spec

Historical standard deviation:

Lok size:

Help

&

|0.001

| 0.004

|0.05

|0.03

Graphs...

(Optional)

[9]4
Cance

Opkions, ..
s, |
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Acceptance Sampling by Variables

Example: Determine the sample size for the variables sampling plan
that will accept 95% of the lots with 0.1% defectives and reject 95%
of the lots with 0.4% defectives. Assume that ¢ is not known.

Solution: The sample size is
- ( Za +Zp \2
Zpy — Zp

_ ( 1.645 + 1.645 \*
3.09 —2.652

= 57
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Acceptance Sampling by Variables

Example: Repeat the preceeding sample size calculation assuming
that o is not known.

Solution: For the ¢ unknown case the k factor is
I — Zp1Za t ZpyZp
Zg + Zﬂ

_ 3.09 x 1.645 +2.652 x 1.645
1.645 + 1.645

= 2.871
and the sample size is

(1) (2
& <1+ 2 Zpy — Zp
_ (1+ 2.871°2 )(1.645+1.645 2
2 3.09 — 2.652

= 289
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Acceptance Sampling by Variables

Acceptance Sampling by Variables - Create/Compare |, __ . . @ oo w0
Lot quality in proportion defective i'Create & Sarmpling Plan ﬂ Bkl
EE R R Graphs...
; kil
Method Units for quality levels: |Proportion defective -]
Upper Specification Limit (USL) 1 Acceptable quality level (AQL): [0.001
Re, b lity level (RQL or LTPD):
Acceptable Quality Level (AQL) 0.0 I N e o ) |IJ.IJO'$
Producer’s Risk {a) 0.05
Producer’s risk (Alpha): | 0.05
Rejectable Quality Level (ROL or LTPD) 0.004 Consumer’s risk (Beta): [005
Consumer's Risk (B) 0.05
Lower spec: |
Generated Plan(s) e [
Sample Size 289 Historical standard deviation: | (Optional)
Critical Distance (k Value) 287115
ZUSL = [upper spec - mean)/standard deviation Lot size: |

Accept lot if ZUSL 2 k- otherwise reject.
Proportion Probability Probability
Defective  Accepting  Rejecting oK
0.001 0931 0.049
Help Cancel
0.004 0.051 0.949 4' Q
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Relative Efficiency of Attributes and
Variables Sampling Plans

® An attribute sampling plan judges units to be in or out of specification.

@ A variables sampling plan uses measurement data to assess
conformance to specification.

@ There are sample size calculations available for both methods. When

a = B and o for the variables sampling plan 1s known, the ratio of the
attributes to variables sample size 1s approximately

2
N attributes ~ 1 Zpy — Zpi
Nyvariables 4 /pl — /pO )
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Relative Efficiency of Attributes and

Variables Sampling Plans

Example: Determine the sample size ratio for the attributes and
variables inspection plans that will accept 95% of the lots with 0.1%
defectives and reject 95% of the lots with 0.4% defectives. Assume
that o for the variables plan is known.
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Solution: The two points on the OC curve are
(po = 0.001,1 —a =0.95) and (p; = 0.004, 8 = 0.05). The ratio of the
attributes- to variables-based sample sizes is approximately

2

2
N attributes 1 ( Z0.001 — Z0.004 >
Mvariables 4 \ J0.004 — /0.001

1 ( 3.090 — 2.652 )2
4\ J0.004 - ,/0.001
~ 48
which is in excellent agreement with the exact ratio from the
MINITAB solutions:
N attributes 2958

Nyariables 57
52

2

Mathews Malnar & Bailey, Inc., Sample Size Calculations 232



Gage Error Studies

@® (Quality engineers use gage error studies to validate measurement
methods. (Gage error studies are analogous to the requirements of
FDA, CVM64: Analytical Method Validation.)

@® A typical gage error study uses several operators who measure the
same units two or more times.

® The data are analyzed by random effects ANOVA and variance
components analysis. Variance components are used to estimate
repeatability or equipment variation (EV) and reproducibility or
appraiser variation (AV).

@ Acceptance criterion for £V and AV is that they must be less than 10%
of the tolerance for a good measurement and less than 30% of the
tolerance for a marginal measurement.
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Gage Error Studies

@® The confidence interval for EV 1s

P<O<EV< dfe E?/) - 1-a.

X é,dfe

® An approximate confidence interval for AV is

P<O<AV< dfo 2?/) ~1-a.

X g,dfo

df | Jdf1 2305 df | Jdf %305
1 15.95 40 1.228
2 4.415 50 1.199
3 2.920 80 1.150
4 2.372 100 1.100
6 1.915 300 1.050
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Gage Error Studies

Example: Estimate the upper confidence limits on EV/Tol and AV/Tol
if a crossed GR&R study with 3 operators, 10 parts, and 2 trials

delivers EV/Tol = 10% and 4V/Tol = 10%. If the results are
unacceptable, recommend a new experiment design.

Solution: Ignoring the operator by part interaction, the ANOVA will
have dfp = 2 and df. = 48. From the table of multipliers for the upper

confidence limits, UCLE\V/T()Z =1.2x0.10 = 0.12 or 12% which is

marginal and UCL~, = 4.4x0.10 = 0.44 or 44% which is very bad.

The problem is the low number of degrees of freedom for estimating
AV which can only be resolved by using more operators. With 7
operators (dfo = 6) the new AV upper confidence limit would be

UCL—,  =1.9x0.10 =0.19 or 19% which is marginal. Using any

more operators is impractical. The number of parts could be reduced
to 6 or 8 to keep the total number of measurements reasonable as
long as the variation in the parts is enough to challenge the
operators.
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Gage Error Studies

Recommendations:

® The number of parts affects £V but not AV. Use enough parts to
challenge the operators.

® Use as many operators as possible — two or three are insufficient.
With seven operators (dfo = 6), the upper confidence limit on AV will
be about twice the point estimate.

@ The number of trials affects EV but not AV. Two trials are usually
sufficient. Three may be a waste of time.
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Seminar Outline

Review of Fundamental Concepts
Means

Standard Deviations
Proportions

Counts

Linear Regression
Correlation

Designed Experiments
Reliability

10 Statistical Quality Control
11. Resampling Methods

WCoNSoOaRWN=
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Resampling Methods

® Monte Carlo - Resamples drawn from an assumed parametric
distribution

@ Bootstrap - Resamples drawn from the original sample
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